ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-05-61-69

УДК: 050

Chromaticity changes of inorganic pigments in traditional Chinese paintings due to narrowband spectra in four-primary white light-emitting-diodes

For Russian citation (Opticheskii Zhurnal):

R. Dang, N. Wang, H. Tan, and J. Wu Chromaticity changes of inorganic pigments in traditional Chinese paintings due to narrowband spectra in four-primary white light-emitting-diodes (Изменения цветности неорганических пигментов традиционной китайской живописи под воздействием узких спектральных линий четырех хроматических компонент светодиодов белого цвета) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 5. С. 61–69. http://doi.org/10.17586/1023-5086-2019-86-05-61-69

 

R. Dang, N. Wang, H. Tan, and J. Wu Chromaticity changes of inorganic pigments in traditional Chinese paintings due to narrowband spectra in four-primary white light-emitting-diodes (Изменения цветности неорганических пигментов традиционной китайской живописи под воздействием узких спектральных линий четырех хроматических компонент светодиодов белого цвета) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 5. P. 61–69. http://doi.org/10.17586/1023-5086-2019-86-05-61-69

For citation (Journal of Optical Technology):

R. Dang, N. Wang, H. Tan, and J. Wu, "Chromaticity changes of inorganic pigments in traditional Chinese paintings due to narrowband spectra in four-primary white light-emitting diodes," Journal of Optical Technology. 86(5), 310-316 (2019). https://doi.org/10.1364/JOT.86.000310

Abstract:

Spectral power distributions of white light-emitting-diodes can be adjusted according to various demands. Thus, it is meaningful to explore the influence law of monochromatic lights mainly constructing white light-emitting-diodes. Four kinds of typical red, yellow, green, and blue monochromatic lights were used to illuminate typical inorganic pigments. CIE XYZ coordinates were examined periodically, and then the colorparameters — dominant wavelength, luminance, and excited purity, of the pigments were calculated through the data. The changing laws of colors of the five pigments under different monochromatic lights were obtained. The relative influence values of the four monochromatic lights were also acquired through calculating and comparing the changing degree of the color parameters. The achievements can provide data basis and reference for research on traditional Chinese paintings pertaining to color damage and rendering effect of the illumination.

Keywords:

traditional Chinese paintings, color change, narrowband spectra, white light-emitting-diodes, museum lighting

Acknowledgements:

This work was funded by the National Key Research and Development Program of China (2018YFC0705103), Natural Science Fund of Tianjin (17JCYBJC22400), Peiyang scholar Program(1801).

OCIS codes: 140.3330, 150.2950, 230.3670, 010.1690

References:

1. The Analysis Report for Chinese Museum Industry Anticipation Survey and Investment Strategy in 2015–2020 (R357868) / Wisdom Consulting Group. Beijing: Wisdom Consulting Group, 2015.
2. Zhang C. The role and status of museums in public cultural service system // Inform. Construct. 2016. V. 1. № 284.
3. CIE 157:2004 Control of Damage to Museum Objects by Optical Radiation. Vienna: CIE, 2004.
4. ANSI/IESNA RP-30–1996 Recommended Practice on Museum and Art Gallery Lighting / Illuminating Engineering Society of North America. N.Y.: IESNA, 1996.
5. The Standard of Museum Illumination Design (GB/T23863-2009) / General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Beijing: China Standard Press, 2009.
6. Dang R., Yuan Y., Liu G., Liu J. Chromaticity changes of inorganic pigment in Traditional Chinese Paintings due to the illumination of frequently-used light sources in museum // Color Res. Appl. 2018. V. 43. № 4. P. 596–605.

7. Cuttle C. Damage to museum objects due to light exposure // Lighting Res. & Technol. 1996. V. 28. № 1. P. 1–9.
8. Saunders D., Kirby J. Wavelength-dependent fading of artists’ pigments // Stud. Conserv. 1994. V. 39. № sup 2. P. 190–194.
9. Farke M., Binetti M., Hahn O. Light damage to selected organic materials in display cases: A study of different light sources // Stud. Conserv. 2016. V. 61. № sup 1. P. 83–93.
10. Pinilla S.M., Vazquez D., Fernandez A.A., Muro C., Munoz J. Spectral damage model for lighted museum paintings: Oil, acrylic and gouache // J. Cult. Herit. 2016. V. 22. P. 931–939.
11. Lowe B.J., Smith C.A., Fraser-Miller S.J., Paterson R.A., Daroux F., Ngarimu-Cameron R., Ford B., Gordon K.C. Light-ageing characteristics of Māori textiles: Color, strength and molecular change // J. Cult. Herit. 2017. V. 24. P. 60–68.
12. Lerwill A., Brookes A., Townsend J.H., Hackney S., Liang H. Micro-fading spectrometry: Investigating the wavelength specificity of fading // Appl. Phys. A. 2015. V. 118. № 2. P. 457–463.
13. Rea M. Opinion: The future of LED lighting: Greater benefit or just lower cost // Lighting Res. & Technol. 2010. V. 42. № 4. P. 370.
14. Chalmers A., Soltic S. Light source optimization: Spectral design and simulation of four-band white-light sources // Opt. Eng. 2012. V. 51. № 4. P. 4003.
15. He G., Yan H. Optimal spectra of the phosphor-coated white LEDs with excellent color rendering property and high luminous efficacy of radiation // Opt. Exp. 2011. V. 19. № 3. P. 2519–2529.
16. Lin D., Zhong P., He G. Color temperature tunable white LED cluster with color rendering index above 98 // IEEE Photonic Tech. L. 2017. V. 29. № 12. P. 1050–1053.
17. He G., Tang J. Spectral optimization of color temperature tunable white LEDs with excellent color rendering and luminous efficacy // Opt. Lett. 2014. V. 39. № 19. P. 5570–5573.
18. Oh J.H., Lee K.N., Do Y.R. Characterization of four-color multi-package white light-emitting diodes combined with various green monochromatic phosphor-converted light-emitting diodes // Proc. SPIE. 2012. V. 8278.
19. Oh J.H., Yang S.J., Sung Y.G., Do Y.R. Excellent color rendering indexes of multi-package white LEDs // Opt. Exp. 2012. V. 20. № 18. P. 20276–20285.
20. Xu Y., Bai T., Tang Y. Study on color rendering of light communication source based on multi-chromatic LED // Spectrosc. Spect. Anal. 2017. V. 37. P. 3693–3697.
21. Jiang P., Peng Y., Mou Y., Cheng H., Chen M., Liu S. Thermally stable multi-color phosphor-in-glass bonded on flip-chip UV-LEDs for chromaticity tunable WLEDs // Appl. Opt. 2017. V. 56. № 28. P. 7921–7926.
22. Oh J.H., Yang S.J., Do Y.R. Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance // Light. Sci. & Appl. 2014. V. 3. P. e141.
23. Code for design of museum building (JGJ 66-2015) / Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Beijing: China Architecture & Building Press, 2015.
24. A method for assessing the quality of daylight simulators for colorimetry // CIE. 1999. V. 51. № 2. P. 1–10.