ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-05-70-77

УДК: 681.2-2, 681.7.034, 621.794.4, 533.924, 621.7-4

Features of the plasma-chemical etching of quartz glass during the formation of deep surface relief on high-precision components of devices

For Russian citation (Opticheskii Zhurnal):

Одиноков С.Б., Сагателян Г.Р., Ковалев М.С., Бугорков К.Н. Особенности плазмохимического травления кварцевого стекла при формировании глубокого рельефа на прецизионных деталях приборов // Оптический журнал. 2019. Т. 86. № 5. С. 70–77. http://doi.org/10.17586/1023-5086-2019-86-05-70-77

 

Odinokov S.B., Sagatelyan G.R., Kovalev M.S., Bugorkov K.N. Features of the plasma-chemical etching of quartz glass during the formation of deep surface relief on high-precision components of devices [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 5. P. 70–77. http://doi.org/10.17586/1023-5086-2019-86-05-70-77

For citation (Journal of Optical Technology):

S. B. Odinokov, G. R. Sagatelyan, M. S. Kovalev, and K. N. Bugorkov, "Features of the plasma-chemical etching of quartz glass during the formation of deep surface relief on high-precision components of devices," Journal of Optical Technology. 86(5), 317-322 (2019). https://doi.org/10.1364/JOT.86.000317

Abstract:

This paper discusses features of the phenomena that occur during plasma-chemical etching of optical glass when deep relief is being fabricated on high-precision components of devices, using apparatus with inductively coupled plasma.

Keywords:

quartz glass, pendulum accelerometer, surface relief, plasma-chemical etching, reaction-diffusion mechanism, dissipative structures

Acknowledgements:

This work was carried out at the N.É. Bauman Moscow State Technical University with support from a grant of the Russian Science Foundation (Project No.18-79-00304).

OCIS codes: 160.2750, 220.4000, 240.6700

References:

1. S. F. Konovalov, Yu. A. Ponomarev, D. V. Maı˘orov, V. P. Podchezertsev, and A. G. Sidorov, “Hybrid microelectromechanical gyroscopes and accelerometers,” Nauka Obraz. Elektron. Nauchn. Tekh. Izd. (10), 1–23 (2011), http://technomag.edu.ru/doc/219257.html.
2. V. A. Zverev, E. V. Krivopustova, and T. V. Tochilina, Optical Materials, Part 2: Textbook for Designers of Optical Systems and Devices (Izd. SPb NIU ITMO, St. Petersburg, 2013), pp. 23–27.
3. E. V. Vetrova, I. P. Smirnov, D. V. Kozlov, and V. V. Zapetlyaev, “Design features of sensitive elements for quartz and silicon pendulum accelerometers,” Raketno-Kosm. Priborostr. Inf. Sist. 4(2), 95–102 (2017).
4. U.S. Department of Health and Human Services, “Hazardous Substances Data Bank (HSDB),” National Toxicology Information Program, National Library of Medicine, Bethesda, MD, 2015, http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm.
5. T. J. Kaiser and M. G. Allen, “A pendulous oscillating gyroscopic accelerometer fabricated using deep-reactive ion etching,” J. Microelectromech. Syst. 12(1) February, 21–28 (2003).
6. S. B. Odinokov, G. R. Sagatelyan, M. S. Kovalyov, A. B. Solomashenko, and Ye. A. Drozdova, “Creation of doe to form the calibration dot patterns inside the optical systems,” Comp. Opt. 37(3), 341–351 (2013).
7. M. S. Kovalev, S. B. Odinokov, E. Yu. Zlokazov, and N. G. Stsepuro, “A combination of computer-generated Fresnel holograms and light-guide substrate with diffractive optical elements for optical display and sighting system,” Proc. SPIE 10818, 1081823 (2018).
8. S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44(21), 4429–4434 (2005).
9. N. L. Kazanskiı˘ and V. A. Kolpakov, Formation of Optical Microrelief in the Extraelectrode Plasma of a High-Voltage Gas Discharge (Radio i Svyaz’, Moscow, 2009).
10. M. Pedersen and M. Huff, “Plasma etching of deep high-aspect ratio features into fused silica,” J. Microelectron. Syst. 26(2), 448–455 (2017).
11. K. N. Bugorkov and G. R. Sagatelyan, “Plasma-chemical etching of glass using a high-frequency diode system,” Estestv. Tekh. Nauki (8), 87–91 (2017).
12. K. N. Bugorkov and G. R. Sagatelyan, “Diode circuit-based glass plasma-chemical etching capabilities,” Mashinostr. Komp. Tekhnol. (11), 44–63 (2017).
13. A. Fedotov, Yu. Agabekov, and V. Machikin, “Multi-functional nanocomposite coatings,” Nanoindustriya (1), 24–26 (2008).
14. G. R. Sagatelyan, A. V. Shishlov, and V. D. Shashurin, “Deposition of functional metallic thin-film coatings on the critical components of gyroscopic space-based devices,” Nanotekhnol.: Razrab. Primen.—XXI Vek (3), 32–36 (2016).
15. M. A. Liberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, Hoboken, New Jersey, 2005), pp. 285–325.
16. V. A. Galperin, E. V. Danilkin, and A. I. Mochalov, “Plasma-etching processes in micro- and nanotechnologies,” study guide, S. P. Timoshenkov, ed. (BINOM. Laboratoriya Znaniı˘, Moscow, 2013), pp. 39–42.
17. W. Hoffman, V. Rydorf, A. Haas, P. V. Schenk, F. Huber, M. Schmeiser, M. Baudler, H. Y. Becher, E. Daenges, H. Shmidbraun, P. Erlich, and H. I. Seifert, Handbook of Inorganic Synthesis, G. M. Brauer, ed. (Mir, Moscow, 1985).
18. G. D. Chukin, Surface Chemistry and the Structure of Disperse Silica (OOO Printa, Moscow, 2008).
19. S. E. Kurushina, “The analysis of spatial pattern formation in reaction-diffusion system near bifurcation,” Comp. Opt. 34(3), 340–349 (2010).
20. V. I. Tomilin and N. P. Tomilina, Physicochemical Principles of the Technology of Electronic Methods (Izd. SFU, Krasnoyarsk, 2007), pp. 7–26.
21. N. G. Lehtinen, “Error functions,” 2010, http://nlpc.stanford.edu/nleht/Science/reference/errorfun.pdf.
22. S. H. Chang, P. C. Cosman, and L. B. Milstein, “Chernoff-type bounds for the Gaussian error function,” IEEE Trans. Commun. 59(11), 2939–2944 (2011).
23. I. I. Privalov, Fourier Series (Izd. MGU im. M.V. Lomonosova, 2017).
24. G. Yu. Riznichenko, Lectures on Mathematical Models in Biology (Izhevsk: Izd. RKhD, Moscow, 2011).
25. V. K. Vanag, Dissipative Structures in Reaction–Diffusion Systems (Izd. Instituta Komp. Issled., Izhevsk, Moscow, 2008).
26. S. Odinokov, G. Sagatelyan, K. Bugorkov, and E. Drozdova, “Regularities and features of two-sided plasma-chemical etching of optical glass parts,” Nanoindustriya (1), 50–62 (2018).
27. E. L. Vardanyan, I. I. Yagafarov, V. V. Budilov, and R. M. Kireev, “Mathematical modeling of the process of depositing hardening coatings based on the Ti–Al intermetallic system,” Uprochnyayushchie Tekhnol. Pokrytiya (6), 7–10 (2014).
28. “The UNICOAT-600 vacuum experimental and commercial apparatus for depositing ionic coatings,” NPF Elan-Praktik, Dzerzhinsk, 2006, http://www.elanpraktik.ru/wp-content/uploads/2017/10/UniCoat-600-pasport.pdf.
29. Taylor Hobson Ltd., “Form Talysurf CNC Series,” 2018, https://www.taylor-hobson.com/-/media/ametektaylorhobson/%20files/product%20downloads/form%20talysurf%20cnc%20series/fts-cnc-series_lowres_en.pdf.
30. E. G. Guk, A. V. Kamanin, N. M. Shmidt, and T. A. Yurre, “Diffusion of impurities from polymer diffusants and its application in the technology of semiconductor devices,” Semiconductors 33(3), 265–275 (1999) [Fiz. Tekh. Poluprovod. 33(3), 257–269 (1999)].
31. A. N. Tikhonov and A. A. Samarskiı˘, Equations of Mathematical Physics (Izd. MGU, Moscow, 1999), pp. 228–242.