ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-07-42-47

УДК: 681.78, 53.083.6

Atmospheric turbulence meter based on a Shack–Hartmann wavefront sensor

For Russian citation (Opticheskii Zhurnal):

Больбасова Л.А., Грицута А.Н., Лавринов В.В., Копылов Е.А., Лукин В.П., Селин А.А., Соин Е.Л. Измеритель параметров турбулентности атмосферы на основе датчика волнового фронта Шэка–Гартмана // Оптический журнал. 2019. Т. 86. № 7. С. 42–47. http://doi.org/10.17586/1023-5086-2019-86-07-42-47

 

Bolbasova L.A., Gritsuta A.N., Kopylov E.A., Lavrinov V.V., Lukin V.P., Selin A.A., Soin E.L. Atmospheric turbulence meter based on a Shack–Hartmann wavefront sensor [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 7. P. 42–47. http://doi.org/10.17586/1023-5086-2019-86-07-42-47  

For citation (Journal of Optical Technology):

L. A. Bolbasova, A. N. Gritsuta, E. A. Kopylov, V. V. Lavrinov, V. P. Lukin, A. A. Selin, and E. L. Soin, "Atmospheric turbulence meter based on a Shack–Hartmann wavefront sensor," Journal of Optical Technology. 86(7), 426-430 (2019). https://doi.org/10.1364/JOT.86.000426

Abstract:

We propose utilizing a Shack–Hartmann wavefront sensor as a differential image motion meter for the real-time measurement of optical turbulence parameters in the atmosphere. A prototype of a mobile meter has been created, and a compact and inexpensive Shack–Hartmann wavefront sensor has been designed for this purpose by using original design solutions and software.

Keywords:

Shack–Hartmann sensor, optical turbulence, differential method

Acknowledgements:

The research was supported by the Russian Science Foundation (17-79-20077).

OCIS codes: 280.4788, 010.1330

References:

1. L. A. Bol’basova and V. P. Lukin, “Analytical models of the altitude dependence of the refractive-index structure constant of a turbulent atmosphere for problems of adaptive optics,” Opt. Atmos. Okeana 29(11), 918–925 (2016).
2. M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227(1), 294–300 (1990).
3. A. Tokovinin, “From differential image motion to seeing,” Publ. Astron. Soc. Pac. 114, 1156–1166 (2002).
4. A. Tokovinin and V. Kornilov, “Accurate seeing measurements with MASS and DIMM,” Mon. Not. R. Astron. Soc. 381, 1179–1189 (2007).
5. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, P. A. Konyaev, and V. P. Lukin, “Path-averaged differential meter of atmospheric turbulence parameters,” Opt. Spectrosc. 109(4), 635–640 (2010) [Opt. Spekstrok. 109(4), 689–695 (2010)].
6. G. B. Scharmer and T. I. M. van Werkhoven, “S-DIMM+ height characterization of day-time seeing using solar granulation,” Astron. Astrophys. 513, A25 (2010).
7. A. Kellerer, N. Gorceix, J. Marino, W. Cao, and P. R. Goode, “Profiles of the daytime atmospheric turbulence above Big Bear solar observatory,” Astron. Astrophys. 542, A2 (2012).
8. N. N. Botygina, P. G. Kovadlo, E. A. Kopylov, V. P. Lukin, M. V. Tuev, and A. Y. Shikhovtsev, “Evaluation of the quality of astronomical seeing at the location of the Large Solar Vacuum Telescope based on optical and meteorological measurement data,” Opt. Atmos. Okeana 26(11), 942–947 (2013).
9. V. Y. Venediktov, D. V. Venediktov, A. V. Gorelaya, A. D. Dmitrieva, D. I. Dmitriev, A. V. Kudryashov, I. L. Lovchiy, A. D. Tsvetkov, E. V. Shalymov, Y. V. Sheldakova, and E. V. Shubenkova, “Investigation of the propagation and adaptive-optical correction of a laser beam on an atmospheric path isolated from external influence,” Opt. Atmos. Okeana 29(11), 942–948 (2016).
10. A. V. Razgulin, E. Z. Kuzhamaliev, A. S. Goncharov, and A. V. Larichev, “On a variation method of wavefront reconstruction from Shack–Hartmann sensor measurements,” Opt. Atmos. Okeana 30(1), 104–108 (2017).
11. GOST R ISO 15367-2-2012, “Lasers and laser setups (systems). Methods for measuring the wavefront shape of a laser beam. Part 2. Shack–Hartmann Sensors,” 2013.
12. C. Curatu, G. Curatua, and J. Rolland, “Fundamental and specific steps in Shack-Hartmann wavefront sensor design,” Proc. SPIE 6288, 628801 (2006).
13. V. P. Lukin, N. N. Botygina, O. N. Emaleev, V. P. Korolkov, L. N. Lavrinova, R. K. Nasyrov, A. G. Poleschuk, and V. V. Cherkashin, “Shack–Hartmann sensor based on a raster of low-aperture off-axis diffractive lenses,” Autometry 45(2), 88–98 (2009).
14. L. V. Antoshkin, V. V. Lavrinov, L. N. Lavrinova, and V. P. Lukin, “Differential method in measuring the turbulence parameters and wind speed with a wavefront sensor,” Opt. Atmos. Okeana 21(1), 75–80 (2008).
15. A. A. Azbukin, A. Y. Bogushevich, V. I. Illichevsky, V. A. Korolkov, A. A. Tikhomirov, and V. D. Sheleva, “Automated ultrasonic meteorological complex AMK-03,” Meteorol. Hydrol. 11, 89–97 (2006).