ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-09-30-37

УДК: 681.772.7

Automatic sensitivity control in television systems

For Russian citation (Opticheskii Zhurnal):

Цыцулин А.К., Лысенко Н.В., Манцветов А.А., Баранов П.С., Бобровский А.И. Автоматическое управление чувствительностью в телевизионных системах // Оптический журнал. 2019. Т. 86. № 9. С. 30–37. http://doi.org/10.17586/1023-5086-2019-86-09-30-37

 

Tsytsulin A.K., Lysenko N.V., Mantsvetov A.A., Baranov P.S., Bobrovskiy A.I. Automatic sensitivity control in television systems [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 9. P. 30–37. http://doi.org/10.17586/1023-5086-2019-86-09-30-37

For citation (Journal of Optical Technology):

A. K. Tsytsulin, N. V. Lysenko, A. A. Mantsvetov, P. S. Baranov, and A. I. Bobrovsky, "Automatic sensitivity control in television systems," Journal of Optical Technology. 86(9), 555-560 (2019). https://doi.org/10.1364/JOT.86.000555

Abstract:

This paper discusses a way to resolve the contradiction between a tendency to maximize the optical-signal intensity range of objects and the limited dynamic range of photodetectors. Methods of controlling the sensitivity of television systems are analyzed, taking into account how they affect the spatial, temporal, noise, and other image-quality criteria. Diagrams from automatic-control theory are adapted to sensitivity-control systems, and a flowchart is proposed for an automatic sensitivity-control system that uses five methods with a specified sequence of priorities. A method is proposed that makes it possible to expand the working illuminance range in Pregius-series photodetectors (Sony) to 200 dB—i.e., by more than 40 dB—by controlling the accumulation time and the analog and digital amplification in combination.

Keywords:

sensitivity control in television system, accumulation time, CCD-array-based, CMOS sensors

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (project No. RFMEFI57817X0242).

OCIS codes: 040.1490

References:

1. A. K. Tsytsulin, Television and Space (Izd. SPbGÉTU LÉTI, St. Petersburg, 2014).
2. A. P. Gladkov, E. G. Kuznetsova, S. A. Gladilin, and M. A. Gracheva, “Adaptive stabilization of image brightness in a technical system for recognizing large moving objects,” Sens. Sist. 31(3), 247–260 (2017).
3. S. Cvetkovic, H. Jellema, and N. H. P. de With, “Automatic level control for video cameras towards HDR techniques,” EURASIP J. Image Video Process. 2010, 197194 (2010).
4. A. A. Umbitaliev, A. K. Tsytsulin, A. A. Mantsvetov, A. E. Rychazhnikov, P. S. Baranov, A. V. Ivanova, and V. V. Kozlov, “Controlling the accumulation regime in solid-state photodetectors,” J. Opt. Technol. 79(11), 738–742 (2012) [Opt. Zh. 79(11), 84–92 (2012)].
5. V. M. Smelkov, I Come to the Raster: Essay on H04N-Class Images (Velikiı˘ Novgorod, 2007).
6. “Camera Sensor Review,” https://www.ptgrey.com/Camera-selector.
7. “The Basler array-type camera,” https://www.baslerweb.com/ru/produkty/kamery/matrichnye-kamery/.
8. “Camera finder,” https://en.ids-imaging.com/store/products/cameras.html.
9. “Television cameras,” http://www.evs.ru/kat_st.php?nkat_id=1.
10. V. N. Legkiı˘, Optoelectronic Elements and the Devices of Special-Purpose Systems (Izd. NGTU, Novosibirsk, 2011).
11. “KAE-02150,” https://www.onsemi.com/pub/Collateral/KAE02150-D.PDF.
12. “EMCCD Image Sensors for Space and Ground-based Astronomy,” https://www.teledyne-e2v.com/products/imaging/emccd-image-sensors-for-space-and-ground-based-astronomy/.
13. “LMZ123AMP,” https://lenses.kowa-usa.com/zoom-high-resolution-lenses/546-LMZ123AMP-XF.html.
14. P. N. Senigov, Automatic-Control Theory: a Compendium of Lectures (YuUrGU, Chelyabinsk, 2000).
15. V. A. Zhmud’, “Adaptive automatic control systems with a single main circuit,” Avtom. Program. Inzh. 2(8), 106–122 (2014).
16. “Recommendation MSÉ-R BT.601-6,” https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.601-6-200701-S!!PDF-R.pdf.
17. “Recommendation MSÉ-R BT.709-6,” https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.709-6-201506-I!!PDF-R.pdf.
18. “Recommendation MSÉ-R BT.2020,” https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.2020-0-201208-S!!PDF-R.pdf.
19. “Hubble Extreme Deep Field,” https://www.nasa.gov/mission_pages/hubble/science/xdf.html.
20. J. Liang, L. Zhu, and L. V. Wang, “Single-shot real-time femtosecond imaging of temporal focusing,” Light: Sci. Appl. 7(1), 42 (2018).
21. D. A. Belous, E. Yu. Puchka, P. S. Baranov, and A. A. Mantsvetov, “Sensitivity of CCD and CMOS array sensors to various light sources,” Vopr. Radioelektron. Ser. Tekh. Telev. (4), 9–15 (2017).
22. “IMX250,” https://www.sony-semicon.co.jp/products/common/pdf/IMX250_252_Flyer.pdf.
23. “IMX430LLJ,” https://www.sony-semicon.co.jp/products/common/pdf/IMX430LLJ_LQJ_Flyer.pdf.
24. F. Zhang and H. Niu, “A 75-ps gated CMOS image sensor with low parasitic light sensitivity,” Sensors 16(7), 999 (2016).