ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-10-89-102

УДК: 612.84; 612.843.7; 004.93; 621.397.3

Masking and detection of hidden signals in dynamic images

For Russian citation (Opticheskii Zhurnal):

Шелепин Ю.Е., Хараузов А.К., Жукова О.В. , Пронин С.В., Куприянов М.С., Цветков О.В. Маскировка и обнаружение скрытых сигналов в динамических изображениях // Оптический журнал. 2020. Т. 87. № 10. С. 89–102. http://doi.org/10.17586/1023-5086-2020-87-10-89-102

 

Shelepin Yu. E., Kharauzov A. K., Zhukova O. V., Pronin S. V., Kupriyanov M. S. , and Tsvetkov O. V.  Masking and detection of hidden signals in dynamic images  [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 10. P. 89–102. http://doi.org/10.17586/1023-5086-2020-87-10-89-102

For citation (Journal of Optical Technology):

Yu. E. Shelepin, A. K. Kharauzov, O. V. Zhukova, S. V. Pronin, M. S. Kupriyanov, and O. V. Tsvetkov, "Masking and detection of hidden signals in dynamic images, Journal of Optical Technology. 87(10), 624-632 (2020). https://doi.org/10.1364/JOT.87.000624

 

Abstract:

This paper proposes a principle for synthesizing a complex target environment and identifies the optical masking characteristics for unconscious perception of a signal. A signal hidden by masking is supplied on the periphery of the field of view for a short time interval, unconsciously activating wide-angle human “periscopic vision” that possesses low spatial and high temporal resolution. In these studies, the selective attention of the narrow-angle central-vision channel with high spatial resolution was charged with a pseudotarget. We assumed that peripheral vision is capable at that instant of unconsciously perceiving signals hidden by a mask and storing them in memory. It was established that the unconscious low-frequency descriptions of the signals stored in memory influence decision making and control the operator’s involuntary motions under conditions of indeterminacy. Opponent-style implementation of the interaction of central and peripheral vision can serve as a pattern for further refining artificial control systems.

Keywords:

physiological optics, field of view, image synthesis, masking, recognizable signal, unconscionable signal, pattern recognition, decision making

OCIS codes: 100.4996, 330.2210, 330.6110

References:

1. H. Schober, “Informationstheorie in Optik und Fernsehen,” Optik 13, 350–364 (1956).
2. L. N. Gassovski˘ı and N. A. Nikol’skaya, “Eye movement during continuous fixation of a point,” Tr. Gos. Opt. Inst. (15), 112–120 (1941).
3. V. D. Glezer and I. I. Tsukkerman, Information and Vision (Izd. Akademii Nauk SSSR, Moscow, 1961).
4. A. V. Luizov and N. S. Fedorova, “Information capacity of the eye,” in Information Processing in the Visual System: Proceedings of the IV Symposium on Sensory System Physiology (Leningrad, 1976), pp. 116–118.
5. D. S. Lebedev and I. I. Tsukkerman, Television and Information Theory (Énergiya, Moscow, 1965).
6. V. D. Glezer, I. I. Tsukkerman, and T. M. Tsykunova, “Using the characteristics of the visual system in television,” Biofizika 4(5), 114–129 (1959).
7. P. Verghese and D. G. Pelli, “The information capacity of visual attention,” Vision Res. 32, 983–995 (1992).
8. R. Marois and J. Ivanoff, “Capacity limits of information processing in the brain,” Trends Cognit. Sci. 9(6), 296–305 (2005).
9. S. Otsuka and J. Saiki, “Neural correlates of visual short-term memory for objects with material categories,” Heliyon 5(12), e03032 (2019).
10. V. Yu. Karpinskaya and Yu. E. Shelepin, “Unconscious perception of autostereographic images,” Eksp. Psikhol. 3(3), 57–65 (2010).
11. S. Ajina and H. Bridge, “Blindsight and unconscious vision: what they teach us about the human visual system,” Neuroscientist 23(5), 529– 541 (2017).
12. L. R. Squire and A. J. Dede, “Conscious and unconscious memory systems,” Cold Spring Harbor Perspect. Biol. 7, a021667 (2015).
13. S. Duke-Elder, “The investigation of indirect vision: the visual fields,” in System of Ophthalmology, Vol. 7: The Foundation of Ophthalmology (Mosby, St. Louis, 1962), pp. 393–425.
14. F.W. Campbell and Yu. E. Shelepin, “Possibilities of the foveola in distinguishing objects,” Sens. Sist. 4(2), 181–185 (1990).
15. R. C. Gur, R. Sara, M. Hagendoorn, O. Marom, P. Hughett, L. Macy, T. Turner, R. Bajcsy, A. Posner, and R. E. Gur, “A method for obtaining 3-dimensional facial expressions and its standardization for use in neurocognitive studies,” J. Neurosci. Methods 115(2), 137–143 (2002).
16. V. A. Barabanshchikov, Perception and Event (Aleteya, St. Petersburg, 2002).
17. V. A. Barabanshchikov, Dynamics of the Perception of Facial Expressions (Kognito-Tsentr, Moscow, 2016).
18. H. Jacobson, “The Informational capacity of the human eye,” Science 113(2933), 292–293 (1951).
19. G. Ostenberg, “Topography of the layer of rod and cones in the human retina,” Acta Ophthalmol. Suppl. 6, 1–103 (1935).
20. V. H. Perry, “The distribution of cones in the primate retina,” in Advances in Photoreception: Proceedings of a Symposium on Frontiers of Visual Science (National Academies Press, Washington, DC, 1990), pp. 105–116.
21. L. V. Moskovchenko, V. A. Tupikov, and É. L. Lysenko, “Construction concept of promising optoelectronic passive rangefinding systems for submarines,” Nats. Oborona (9), 60–61 (2012).
22. V. V. Aleksandrov and N. D. Gorski˘ı, Image Representation and Processing: a Recursive Approach (Nauka, Leningrad, 1985).
23. Yu. E. Shelepin, V. M. Bondarko, and M. V. Danilova, “Structure of the foveola and a pyramidal organization model of the visual system,” Sens. Sist. 9(1), 87–89 (1995).
24. L. Schwabe, “Stress and the engagement of multiple memory systems: integration of animal and human studies,” Hippocampus 23(11), 1035–1043 (2013).
25. D. L. Schacter and R. L. Buckner, “Priming and the brain,” Neuron 20, 185–195 (1998).
26. K. Yu. Shelepin, G. E. Trufanov, V. A. Fokin, P. P. Vasil’ev, and A. V. Sokolov, “Digital visualization of the activity of neural networks of the human brain before, during, and after insight when images are being recognized,” J. Opt. Technol. 85(8), 468–475 (2018).
27. A. Mack and I. Rock, Inattentional Blindness (MIT Press, Cambridge, 1998).
28. Y. Shelepin, M. Kuvaldina, A. Harauzov, O. Vakhrameeva, S. Pronin, and P. Yamschinina, “Investigation of the inattentional blindness for dynamic events as a result of saccadic suppression,” Perception 41, 229 (2012).
29. Yu. E. Shelepin, Introduction to Neuroiconics (Troitski˘ı Most, St. Petersburg, 2017)
30. F. L. Kitterle, “Psychophysics of lateral tachistoscopic presentation,” Brain Cognit. 5, 131–162 (1986).
31. N. N. Krasil’nikov, Theory of Image Transport and Perception (Radio i Svyaz’, Moscow, 1986).
32. N. N. Krasil’nikov, O. N. Krasil’nikova, and Yu. E. Shelepin, “Experimental study of matched spatial filtering in the human visual system when purely chromatic images are observed,” J. Opt. Technol. 66(10), 862–864 (1999) [Opt. Zh. 66(10), 22–25 (1999)].
33. M. M. Miroshnikov, “Matched filtering in visual perception and information matching in iconics,” J. Opt. Technol. 66(9), 773–775 (1999) [Opt. Zh. 66(9), 5–8 (1999)].
34. Yu. D. Kropotov, “Canonical cortical module as a spatial-frequency filter,” J. Opt. Technol. 66(9), 832–835 (1999) [Opt. Zh. 66(9), 81–84 (1999)]
35. Yu. E. Shelepin, V. A. Fokin, A. K. Kharauzov, S. V. Pronin, and V. N. Chikhman, “Location of the decision-making center during shape perception of visual stimuli,” Dokl. Akad. Nauk 429(6), 835–837 (2009).
36. O. V. Borachuk, Yu. E. Shelepin, A. K. Kharauzov, P. P. Vasil’ev, V. A. Fokin, and A. V. Sokolov, “Study of the influence of the role of the instruction to the observer in tasks of recognizing emotionally colored patterns,” J. Opt. Technol. 82(10), 678–684 (2015).
37. G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annu. Rev. Neurosci. 27, 169–192 (2004).
38. O. A. Vakhrameeva, A. K. Kharauzov, S. V. Pronin, E. Yu. Malakhova, and Yu. E. Shelepin, “Visual framing when recognizing small images in a scene that contains objects of various sizes,” Fiziol. Chel. 42(5), 39–48 (2016).
39. Y. Xia, J. Kim, J. Canny, K. Zipser, T. Canas-Bajo, and D. Whitney, “Periphery–fovea multi-resolution driving model guided by human attention,” in IEEE Winter Conference on Applications of Computer Vision (WACV), Aspen, Colorado, 2020, pp. 1767–1775, https://github.com/pascalxia/periphery_fovea_driving.
40. Yu. E. Shelepin, “The Rekognitron: Report for 1991 to Topic No. 157 ‘Display’ of Project GKNT ‘New Information Technologies’,” Manager Academician G. S. Pospelov.
41. Y. A. Shichkina, M. S. Kupriyanov, and S. O. Moldachev, “Application of Docker Swarm cluster for testing programs, developed for system of devices within paradigm of Internet of things,” J. Phys. Conf. Series 1015(3), 032129 (2018).