ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-11-41-52

УДК: 535.339.047

How irradiation in the visible and near-ir regions affects the mobility of ciliates

For Russian citation (Opticheskii Zhurnal):

Петрищев Н.Н., Чистякова Л.В., Струй А.В., Файзуллина Д.Р., Папаян Г.В. Влияние облучения в видимом и ближнем инфракрасном диапазонах спектра на двигательную активность инфузорий // Оптический журнал. 2020. Т. 87. № 11. С. 41–52. http://doi.org/10.17586/1023-5086-2020-87-11-41-52

For citation (Journal of Optical Technology):

N. N. Petrishchev, L. V. Chistyakova, A. V. Struĭ, D. R. Faĭzullina, and G. V. Papayan, "How irradiation in the visible and near-IR regions affects the mobility of ciliates," Journal of Optical Technology. 87(11), 665-672 (2020). https://doi.org/10.1364/JOT.87.000665

Abstract:

The action of low-intensity light on biological objects has been studied by estimating the mobility variation of the ciliate Paramecium caudatum Erhenberg, 1838. Using apparatus that makes it possible to measure the motion of the paramecia after they are irradiated by laser diodes (irradiation wavelength at 445, 662, and 808 nm) and by an LED (518 nm), speed variations were observed immediately after irradiation, having a strongly expressed oscillatory component, which is presumably explained by the action of self-regulation mechanisms. In the days following irradiation with energy density 1J/cm2 in the blue–green region, the speed of the ciliates increases by about a factor of 1.3 by comparison with a control experiment (with no irradiation). The mobility gradually decreases as the energy density of the irradiation increases, falling by a factor of 1.26 at 15J/cm2 (445 nm) and by a factor of 1.19 (518 nm). Irradiation with wavelength 662 nm has a similar effect, except that the stimulating effect is appreciably stronger (by a factor of 1.64 at 1J/cm2) while the suppression effect by a factor of 1.23 at 15J/cm2 is maintained. As far as the near-IR region is concerned (808 nm), the stimulation effect is present at all doses, demonstrating the greatest growth by a factor of 1.68 when the energy density is 15J/cm2.

Keywords:

photobiomodulation, low-intensity laser therapy, infusories

OCIS codes: 170.4470, 170.5180, 340.7460

References:

1. E. Mester, B. Szende, and P. Gärtner, “Die Wirkung der Lasstrahlen auf den Haarwuchs der Maus (The effect of laser beams on the growth of hair in mice),” Radiobiol. Radiother. 9(5), 621–626 (1968).
2. V. M. Inyushin, Laser Light and the Living Organism (Kaz. Gos. Univ. im. S.M. Kirova, Alma-Ata, 1970).
3. N. F. Gamaleya, Lasers in Experiment and Clinic (Meditsina, Moscow, 1972).
4. A. V. Ge˘ınits and S. V. Moskvin, Laser Therapy in Cosmetology and Dermatology (Izd. Triada, Moscow–Tver, 2010).
5. O. K. Skobelkin, ed., The Use of Low-Intensity Lasers in Clinical Practice (Lazernaya Akademiya Nauk, Moscow, 1997).
6. V. Rai, ed., Laser Therapies: Types, Uses and Safety (Nova Science, New York, 2020).
7. M. R. Hamblin and T. N. Demidova, “Mechanisms of low level light therapy,” Proc. SPIE 6140, 614001 (2006).
8. M. R. Hamblin, Y. Y. Huang, and V. Heiskanen, “Non-mammalian hosts and photobiomodulation: do all life-forms respond to light?” Photochem. Photobiol. 95(2), 126–139 (2018).
9. J. C. Sutherland, “Biological effects of polychromatic light,” Photochem. Photobiol. 76, 164–170 (2002).
10. A. Amaroli, S. Ferrando, and S. Benedicenti, “Photobiomodulation affects key cellular pathways of all life-forms: considerations on old and new laser light targets and the calcium issue,” Photochem. Photobiol. 95(1), 455–459 (2019).
11. W. Katagiri, G. Lee, H. A. Tanushi, K. Tsukada, H. S. Choi, and S. Kashiwagi, “High-throughput single-cell live imaging of photobiomodulation with multispectral near-infrared lasers in cultured T cells,” J. Biomed. Opt. 25(3), 036003 (2020).
12. B. Chung, T. Dai, S. K. Sharma, Y. Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2011).
13. M. Cronshaw, S. Parker, and P. Arany, “Feeling the heat: evolutionary and microbial basis for the analgesic mechanisms of photobiomodulation therapy,” Photobiomodul. Photomed. Laser Surg. 37(9), 517–526 (2019).
14. T. I. Karu, “Universal cellular mechanism of laser biostimulation: photoactivation of a respiratory-chain enzyme of cytochrome-c oxidase,” in Modern Laser Information and Laser Technology. Collection of Abstracts, V. Ya. Panchenko and V. S. Golubeva, eds. (Iterkontakt Nauka, Moscow, 2005), pp. 131–143.
15. T. I. Karu, “Cellular and molecular mechanisms of photobiomodulation (low-power laser therapy),” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000306 (2014).
16. K. A. Ball, P. R. Castello, and R. O. Poyton, “Low-intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome-c oxidase: Implications for phototherapy,” J. Photochem. Photobiol. Sci. B. 102(3), 182–191 (2011).
17. A. C. Chen, P. R. Arany, Y. Y. Huang, E. M. Tomkinson, S. K. Sharma, G. B. Kharkwal, T. Saleem, D. Mooney, F. E. Yull, T. S. Blackwell, and M. R. Hamblin, “Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts,” PLoS One 6(7), 182–191 (2011). 672 Vol. 87, No. 11 / November 2020 / Journal of Optical Technology Research Article
18. A. C. Chen, Y. Y. Huang, P. R. Arany, and M. R. Hamblin, “Role of reactive oxygen species in low level light therapy,” Proc. SPIE 7165, 716502 (2009).
19. Y. Li, M. Lee, N. Kim, G. Wu, D. Deng, J. M. Kim, X. Liu, W. D. Heo, and Z. Zi, “Spatiotemporal control of TGF- signaling with light,” ACS Synth. Biol. 7(2), 443–451 (2018).
20. L. A. Trotter, D. Patel, S. Dubin, C. Guerra, V. McCloud, P. Lockwood, R. Messer, J. C. Wataha, and J. B. Lewis, “Violet/blue light activates Nrf2 signaling and modulates the inflammatory response of THP-1 monocytes,” Photochem. Photobiol. Sci. 16(6), 883–889 (2017).
21. M. R. Hamblin, “Mechanisms and mitochondrial redox signaling in photobiomodulation,” Photochem. Photobiol. 94(2), 199–212 (2018).
22. A. Sancar, “Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors,” Chem. Rev. 103(6), 2203–2237 (2003).
23. M. F. Haug, M. Gesemann, V. Lazovic´ , and S. C. F. Neuhauss, “Eumetazoan cryptochrome phylogeny and evolution,” Genome Biol. Evol. 7(2), 601–619 (2015).
24. H. Serrage, V. Heiskanen,W. M. Palin, P. R. Cooper, M. R. Milward, M. Hadis, and M. R. Hamblin, “Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light,” Photochem. Photobiol. Sci. 18(8), 1877–1909 (2019).
25. L. Santana-Blank, E. Rodríguez-Santana, and K. Santana-Rodríguez, “Theoretic, experimental, clinical bases of the water oscillator hypothesis in near-infrared photobiomodulation,” Photomed. Laser Surg. 28(S1), S41–S52 (2010).
26. S. V. Moskvin, Principles of Laser Therapy, Effective Laser Therapy (Izd. Triada, Moscow–Tver’, 2016).
27. Y. Wang, Y. Y. Huang, Y. Wang, P. Lyu, and M. R. Hamblin, “Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells,” Sci. Rep. 7(1), 77811 (2017).
28. N. N. Petrishchev, L. I. Yantareva, and S. I. Fokin, “Dependence of the photoeffect of IR laser radiation on the power flux density and functional state of a bio-object (the ciliate Spirostomum ambiguum),” Lazern. Med. 9(3), 43–48 (2005).
29. A. Amaroli, S. Ravera, S. Parker, I. Panfoli, A. Benedicenti, and S. Benedicenti, “Effect of 808-nm diode laser on swimming behavior, food vacuole formation and endogenous ATP production of Paramecium primaurelia (Protozoa),” Photochem. Photobiol. 91(5),
1150–1155 (2015).
30. N. N. Petrishchev, G. V. Papayan, L. V. Chistyakova, A. V. Struy, and D. R. Faizullina, “Effect of photobiomodulation by red and infrared laser radiation on motility of Paramecium caudatum,” Zh. Evol. Biokhim. Fiziol. 54(6), 406–412 (2018).
31. A. Becker, A. Klapczynski, N. Kuch, F. Arpino, K. Simon-Keller, C. De La Torre, C. Sticht, F. A. van Abeelen, G. Oversluizen, and N. Gretz, “Gene expression profiling reveals aryl hydrocarbon receptor as a possible target for photobiomodulation when using blue light,” Sci. Rep. 6, 33847 (2016).
32. A. B. Rubin, Biophysics (Izd. MGU, Moscow, 2004).
33. G. V. Papayan, N. N. Petrischev, and M. M. Galagudza, “Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion,” Photodiagn. Photodyn. Ther. 11(3), 400–408 (2014).
34. R. A. Vacca, L. Moro, V. A. Petragallo, M. Greco, F. Fontana, and S. Passarella, “The irradiation of hepatocytes with He-Ne laser causes an increase of cytosolic free calcium concentration and an increase of cell membrane potential, correlated with it, both increases taking place in an oscillatory manner,” IUBMB Life 43(5), 1005–1014 (1997).
35. E. Alexandratou, D. Yova, P. Handris, D. Kletsas, and S. Loukas, “Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy,” Photochem. Photobiol. Sci. 1(8), 547–552 (2002).
36. Yu. A. Vladimirov, T. V. Zhidkova, E. V. Proskurnina, and D. Yu. Izmailov, “Study of the biostimulating action of LEDs and lowintensity lasers on the human organism and animals by the method of activated chemiluminescence of blood leucocytes,” Fotobiol. Fotomed. 9(1), 42–48 (2012).
37. S. Passarella and T. Karu, “Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation,” J. Photochem. Photobiol. Sci. B 140, 344–358 (2014).
38. T. Shinozawa, H. Hashimoto, J. Fujita, and Y. Nakaoka, “Participation of GTP-binding protein in the photo-transduction of Paramecium bursaria,” Cell Struct. Funct. 21(6), 469–474 (1996).
39. A. E. Dontsov, N. B. Serezhnikova, L. S. Pogodina, T. S. Guryeva, and P. P. Zak, “Photoactivation of cytochrome-c oxidase activity of the mitochondria of the liver of Japanese quail by therapeutic doses of blue and red LED radiation,” Patol. Fiziol. Eksp. Ter. 62(3), 25–30 (2018).