ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-11-58-67

УДК: 681.78

Videoendoscopy of working blades of steam turbines and control of their geometrical parameters

For Russian citation (Opticheskii Zhurnal):

Шуть Г.А., Коротаев В.В., Пузырев Е.И., Рыжова В.А., Тимофеев А.Н., Ахмеров А.Х., Родикова Л.С. Видеоэндоскопирование рабочих лопаток паровых турбин и контроль их геометрических параметров // Оптический журнал. 2020. Т. 87. № 11. С. 58–67. 10.17586/1023-5086-2020-87-11-58-67



For citation (Journal of Optical Technology):

G. A. Shut, V. V. Korotaev, E. I. Puzyrev, V. A. Ryzhova, A. N. Timofeev, A. K. Akhmerov, and L. S. Rodikova, "Videoendoscopy of working blades of steam turbines and control of their geometrical parameters," Journal of Optical Technology. 87(11), 677-683 (2020).



This paper discusses a solution to the problem of monitoring the sizes of working steam-turbine blades, using a videoendoscopy system in the barring mode. The relationships of the optical system’s parameters with the shape, size, and speed of the working blades are determined for a significant depth of field. A method and an algorithm are proposed for processing digital images. The paper discusses the error components of monitoring the chord size of the working blades during the processing of digital images obtained as the rotor rotates. The characteristics of a prototype of the system are experimentally studied, using a physical model of the peripheral part of the blade system of a K-1200-6.8/50 steam turbine. Ways are proposed to weaken the influence of the error components of the videoendoscopy system.


video endoscopy system, shaft rotation mode, rotor blade chord, erosion wear, matrix field of optical radiation receiver, error component analysis

OCIS codes: 080.3620, 120.4630


1. V. A. Khaimov, Low-Discharge Modes of the LPC of the T-250/300-240 Turbine (BKhV-Peterburg, St. Petersburg, 2007).
2. Y. D. Shkotov, “Concerning erosional wear of the flow-through parts of steam turbines,” Energetik (4), 16–17 (1990).
3. O. A. Povarov, B. Stanisha, and V. A. Ryzhenkov, “Study of the erosional wear of steam-turbine blades,” Teploenergetika (4), 66–69 (1988).
4. “Methodical Indications of the Order of Estimation of the Workability of the Working Blades of Steam Turbines in the Process of Fabrication, Operation, and Repair. An Industrial Management Document,” RD 153-34.1-17.462-00 (RAO EÉS Rossii. VTI, Moscow, 2001). Research Article Vol. 87, No. 11 / November 2020 / Journal of Optical Technology 683
5. A. V. Lagerev, “Probability prediction of the erosion of steam turbines,” in The Erosion of Steam Turbines: A Probability Approach, vol. 2 (Mashinostroenie, Moscow, 2006).
6. I. V. Fedyakov, “Electrical energetics: the wear of equipment as a system problem of the industry,” Akad. Energ. (1), 4–9 (2013).
7. M. B. Yavel’ski, M. D. Roshal’, and M. B. Porshnev, “Study of erosion damage by a radiation method,” Teploenergetika (4), 61–62 (1989).
8. V. A. Khaimov, Y. Y. Kachuriner, and Y. A. Voropaev, “Erosional wear by hard particles of the flow-through part of TsSD-1 turbine T-250/300-240,” Elektr. Stn. (4), 14–22 (2004).
9. V. A. Khaimov, E. S. Kokin, and E. I. Puzyrev, “The implementation of an on-line monitoring and diagnostic system of the erosional wear of the working blades of powerful steam turbines,” Elektr. Stn. (12), 32–36 (2006).
10. G. A. Shut, E. I. Puzyrev, A. V. Vasil’eva, A. S. Vasil’ev, I. S. Nekrylov, A. K. Akhmerov, and A. N. Timofeev, “Integrated endoscopy system for monitoring erosion wear of steam turbine blades,” Izv. Vyssh. Uchebn. Zaved. Priborostr. 63(3), 228–237 (2020).
11. V. A. Khaimov, V. M. Lyapunov, and A. M. Rubinov, “System for on-line monitoring and diagnosis of the erosional wear of the blade system of steam turbines,” Trudy TsKTI (292), 114–122 (2003).
12. A. S. Machikhin, “Measurement possibilities of modern videoendoscopes,” Dvigatel’ (3), 8–9 (2009).
13. A. Schick, F. Forster, and M. Stockmann, “3D measuring in the field of endoscopy,” Proc. SPIE 8082, 808216 (2011).
14. N. Pears, Y. Liu, and P. Bunting, 3D Imaging, Analysis and Applications (Springer-Verlag, London, 2012).
15. E. I. Puzyrev and G. A. Shut, “Device for monitoring the status inside turbine modules and the details of steam turbines,” Russian Federation Patent No. 2624380 (2017).
16. A. A. Sarvin, Contactless Systems for Measuring Geometrical Parameters (Izd. LGU, Leningrad, 1983).
17. V. N. Churilovski˘ı, Theory of Optical Devices (Mashinostroenie, Moscow, 1966).
18. R. C. Gonzalez and R. E. Woods, Digital Image Processing: Practical Advice (Prentice Hall, Upper Saddle River, N.J., 2002; Tekhnosfera, Moscow, 2012).
19. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
20. V. V. Korotaev and A. V. Krasnyashchikh, Video Information Measurement System (NIU ITMO, St. Petersburg, 2012).
21. S. M. Latyev, The Design of High-Precision (Optical) Devices (Lan’, St. Petersburg, 2015).