ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-03-46-55

УДК: 535.361.22, 577.3

Optical properties of human dentin when it is immersed in glucose in vitro and the kinetics of this process

For Russian citation (Opticheskii Zhurnal):

Селифонов А.А., Тучин В.В. Оптические свойства дентина зуба человека при иммерсии in vitro в глюкозе и кинетика этого процесса // Оптический журнал. 2020. Т. 87. № 3. С. 46–55.


Selifonov A.A., Tuchin V.V. Optical properties of human dentin when it is immersed in glucose in vitro and the kinetics of this process [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 3. P. 46–55.

For citation (Journal of Optical Technology):

A. A. Selifonov and V. V. Tuchin, "Optical properties of human dentin when it is immersed in glucose in vitro and the kinetics of this process," Journal of Optical Technology. 87(3), 168-174 (2020).


Controlling the optical properties of biological tissues is one of the most important current tasks of clinical medicine not only for detecting the initial forms of diseases but also for effective phototherapy and laser surgery. In the course of in vitro studies of dentin specimens, using reflection spectroscopy, the effective diffusion coefficient of a 40% aqueous solution of glucose in dentin was computed and was found to be (5.4±0.8)×10−6cm2/s. The optical clearing efficiency of human dentin immersed in a 40% solution of glucose was determined by measuring the total transmission of the samples in the spectral range from 200 to 800 nm. It was found that the clearing efficiency is greatest at 250 nm after 90 min of action by a 40% solution of glucose and equals 370%, while that at 400 nm is 83%.


dentin, glucose, diffusion, diffuse reflection spectra, total transmission spectra, optical clearing


The research was supported by the Russian Foundation for Basic Research (17-00-00275 (K)).
This article contains no research with the participation of people as objects of research.
The authors express gratitude to Candidate of Physical-Mathematical Sciences Yuliya Sergeevna Skibina, OOO NPP Nanostructural Glass Technology, for preparing the samples.

OCIS codes: 290.1990, 300.0300, 300.6530


1. V. V. Tuchin, Lasers and Fiber Optics in Biomedical Research (Fizmatlit, Moscow, 2010).
2. V. V. Tuchin, Tissue Optics: Light-Scattering Methods and Instruments for Medical Diagnostics (Fizmatlit, Moscow, 2012; SPIE Press, Bellingham, WA, 2015), vol. PM254.
3. S. K. Makhija, J. D. Bader, D. A. Shugars, M. S. Litaker, S. Nagarkar, V. V. Gordan, D. B. Rindal, D. J. Pihlstrom, R. Mungia, C. Meyerowitz, and G. H. Gilbert, “Influence of 2 caries-detecting devices on clinical decision making and lesion depth for suspicious occlusal lesions: a randomized trial,” J. Am. Dent. Assoc. 149(4), 299–307 (2018).
4. L. P. Choo-Smith, C. C. Dong, B. Cleghorn, and M. Hewko, “Shedding new light on early caries detection,” J. Can. Dent. Assoc. 74, 913–918 (2009).
5. K. Imai, Y. Shimada, A. Sadr, Y. Sumi, and J. Tagami, “Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro,” J. Endod. 38, 1269–1274 (2012).
6. J.-Y. Park, J.-H. Chung, J.-S. Lee, H.-J. Kim, S.-H. Choi, and U.-W. Jung, “Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study,” J. Periodontal Implant. Sci. 47(47), 30–40 (2017).
7. S. L. Chong, “Detection of white spot lesions around orthodontic brackets using polarization-sensitive optical coherence tomography,” Am. J. Orthod. Dentofacial Orthop. 132, 711 (2007).
8. P. E. Benson, A. A. Shah, and D. R. Willmot, “Polarized versus nonpolarized digital images for the measurement of demineralization surrounding orthodontic brackets,” Angle Orthodontist 78(2), 288–293 (2008).
9. K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
10. V. V. Tuchin, “Tissue optics and photonics: light-tissue interaction II [Review],” J. Biomed. Photon. Eng. 2, 030201 (2016).
11. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, “Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy,” J. Biomed. Photon. Eng. 1(1), 22–58 (2015).
12. E. A. Genina, A. N. Bashkatov, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical clearing of cranial bone by multicomponentimmersion solutions and cerebral venous blood flow visualization,” Izv. Sarat. Univ. Nov. Ser. Ser. Fiz. 17(2), 98–110 (2017).
13. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of human dura mater by glucose solutions,” J. Biomed. Photon. Eng. 3(1), 010309 (2017).
14. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Estimation of glucose diffusion coefficient in human dura mater,” Izv. Saratov. Univ. Nov. Ser. Ser. Fiz. 18(1), 32–45 (2018).
15. D. K. Tuchina, P. A. Timoshina, V. V. Tuchin, A. N. Bashkatov, and E. A. Genina, “Kinetics of rat skin optical clearing at topical application of 40% glucose: ex vivo and in vivo studies,” IEEE J. Sel. Top. Quantum Electron. 25(1), 7200508 (2019).
16. L. M. Oliveira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, “The characteristic time of glucose diffusion measured for muscle tissue at optical clearing,” Laser Phys. 23(7), 075606 (2013).
17. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical clearing of biological tissues: prospects of use in medical diagnosis and phototherapy,” Al’m. Klin. Med. (17-1), 39–42 (2008).
18. A. Kotyk and K. Janacek, Cell Membrane Transport: An Interdisciplinary Approach (Plenum Press, New York, 1977; Mir, Moscow, 1980).
19. E. A. Genina, A. N. Bashkatov, E. A. Chikina, and V. V. Tuchin, “Diffusion of methylene blue in the mucous membrane of the human upper maxillary cavity,” Biofizika 52(6), 1104–1111 (2007).
20. I. S. Kudrin, Anatomy of the Organs of the Oral Cavity (Meditsina, Moscow, 1968).
21. V. Grisimov and S. Radlinski˘ı, “The effect of the optical anisotropy of dentin on tooth color,” Dent. Art. 1(26), 34 (2006).
22. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Measurement of glucose diffusion coefficients in human tissues,” in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, V. V. Tuchin, ed. (Taylor & Francis, 2009), chap. 1, pp. 587–621.
23. Y. Zhou, J. Yao, and L. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 6(21), 061007 (2016).
24. V. V. Tuchin and G. B. Altshuler, “Dental and oral tissue optics,” in Fundamentals and Applications of Biophotonics in Dentistry, A. Kishen and A. Asundi, eds., Series on Biomaterials and Bioengineering (Imperial College Press, London, 2006), pp. 245–300.
25. A. V. Belikov, V. N. Grisimov, A. V. Skripnik, and K. V. Shatilova, Lasers in Stomatology, Part 1 (Universitet ITMO, St. Petersburg, 2015).
26. F. J. Gutter and G. Kegeles, “Diffusion in supersaturated solutions: II. Glucose solutions,” J. Am. Chem. Soc. 75(15), 3900–3904 (1953).
27. E. McLaughlin, “Diffusion in a mixed dense fluid,” J. Chem. Phys. 50(3), 1254–1262 (1969).
28. A. A. Selifonov and V. V. Tuchin, “Study of the diffusion of methylene blue in human dentin,” Biofizika 63(6), 1211–1215 (2018).
29. A. A. Selifonov and V. V. Tuchin, “Diffusion of methylene blue in human dentin in the presence of glucose: in vitro study,” Proc. SPIE 11065, 110651Y (2019).
30. B. Amsden, “Solute diffusion within hydrogels. Mechanisms and models,” Macromolecules 31(23), 8382–8395 (1998).
31. N. A. Trunina, V. V. Lychagov, and V. V. Tuchin, “OCT monitoring of diffusion of water and glycerol through tooth dentine in different geometry of wetting,” Proc. SPIE 7563, 7563OU (2010).
32. V. V. Tuchin, A. N. Bashkatov, É. A. Genina, Yu. P. Sinichkin, and N. A. Lakodina, “In vivo investigation of the immersion-liquid-induced human skin-clearing dynamics,” Tech. Phys. Lett. 27(6), 489–490 (2001) [Pis’ma Zh. Tekh. Fiz. 27(12), 10–14 (2001)].
33. A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazereva, A. B. Pravdin, M. E. Shvachkina, P. A. Timoshina, D. K. Tuchina, D. D. Yakovlev, D. A. Yakovlev, I. Yu. Yanina, O. S. Zhernovaya, and V. V. Tuchin, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. Biomed. Opt. 23, 091416 (2018).
34. I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, and V. Tuchin, “Moving tissue spectral window to the deep-ultraviolet via optical clearing,” J. Biophotonics 12(12), e201900181 (2019).
35. Yu. M. Alexandrovskaya, E. G. Evtushenko, M. M. Obrezkova, V. V. Tuchin, and E. N. Sobol, “Control of optical transparency and infrared laser heating of costal cartilage via injection of iohexol,” J. Biophotonics 11(12), e201800195 (2018).