ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-03-56-65

УДК: 681.7.068 535

Simulation of ultrashort pulse generation in an all-fiber erbium-doped ring laser with a highly nonlinear cavity

For Russian citation (Opticheskii Zhurnal):

Вербицкий А.В., Дворецкий Д.А., Сазонкин С.Г., Орехов И.О., Ососков Я.Ж., Пнёв А.Б., Денисов Л.К., Карасик В.Е. Моделирование генерации ультракоротких импульсов в полностью волоконном кольцевом эрбиевом лазере с высоконелинейным резонатором  // Оптический журнал. 2020. Т. 87. № 3. С. 56–65.


Verbitskiy A.V., Dvoretskiy D.A., Sazonkin S.G., Orekhov I.O., Ososkov Ya.Kh., Pnyov A.B., Denisov L.K., Karasik V.E. Simulation of ultrashort pulse generation in an all-fiber erbium-doped ring laser with a highly nonlinear cavity [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 3. P. 56–65.

For citation (Journal of Optical Technology):

A. V. Verbitskii, D. A. Dvoretskiy, S. G. Sazonkin, I. O. Orekhov, Y. G. Ososkov, A. B. Pnev, L. K. Denisov, and V. E. Karasik, "Simulation of ultrashort pulse generation in an all-fiber erbium-doped ring laser with a highly nonlinear cavity," Journal of Optical Technology. 87(3), 175-181 (2020).


The generation of ultrashort pulses in an all-fiber erbium ring laser with a highly nonlinear cavity is mathematically modeled. It is shown that ultrashort pulses with the characteristics of both stretched pulses and solitons are generated in a highly nonlinear fiber cavity. The evolution of the width, energy, and spectral width of the ultrashort pulses in the fiber laser is obtained in the mathematical analysis. It is shown that an ultrashort pulse in a highly nonlinear cavity has a minimum width of about 200 fs, a maximum spectral width at half-height of about 17 nm, and a maximum energy of about 180 pJ. The modeling results are verified by comparing them with experimental data.


mathematical model, mode-locking, fiber laser, highly nonlinear cavity, ultrashort pulses, soliton


The research was supported by the Russian Foundation for Basic Research (Scientific Project No. 18-32-20017 and Scientific Project No. 18-38-00615).

OCIS codes: 140.7090, 320.7090, 190.4370


1. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
2. P. G. Kryukov, Ultraviolet Pulsed Lasers and Their Applications (Izd. Dom “Intellekt”, Dolgoprudny˘ı, 2012).
3. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
4. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
5. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
6. I. A. Yarutkina, “Mathematical modeling of the propagation of dissipative and dispersion-controled solitons in pulsed fiber lasers,” Candidate’s dissertation (IVT SO RAN, Novosibirsk, 2014).
7. S. K. Turitsyn, N. N. Rozanov, I. A. Yarutkina, A. E. Bednyakova, S. V. Fedorov, O. V. Shtyrina, and M. P. Fedoruk, “Dissipative solitons in fiber lasers,” Phys. Usp. 59(7), 642–668 (2016) [Usp. Fiz. Nauk 186(7), 713–742 (2016)].
8. T. Lei, C. Tu, F. Lu, Y. Deng, and E. Li, “Numerical study on self-similar pulses in mode-locking fiber laser by coupled Ginzburg-Landau equation model,” Opt. Express 17(2), 585–591 (2009).
9. C. Ma, X. Tian, B. Gao, and G. Wu, “Numerical simulations on influence of the saturable absorber in Er-doped fiber laser,” Opt. Commun. 410, 941–946 (2018).
10. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15(13), 8252–8262 (2007).
11. L. Wang, A. Chong, and J. W. Haus, “Numerical modeling of mode-locked fiber lasers with a fiber-based saturable absorber,” Opt. Commun. 383, 386–390 (2017).
12. B. Gao, C. Ma, J. Huo, Y. Guo, T. Sun, and G. Wu, “Influence of gain fiber on dissipative soliton pairs in passively mode-locked fiber laser based on BP as a saturable absorber,” Opt. Commun. 410, 191–196 (2018).
13. G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical maps for fiber lasers mode locked with nonlinear polarization evolution: comparison with semi-analytical models,” Fiber Integr. Opt. 27(5), 320–340 (2008).
14. Z. Cheng, H. Li, and P. Wang, “Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers,” Opt. Express 23(5), 5972–5981 (2015).
15. B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, “Intracavity dynamics in high-power mode-locked fiber lasers,” Phys. Rev. A 81(3), 033828 (2010).
16. R. H. Hardin and F. D. Tappert, “Applications of the split-step Fourier method to the numerical solution of nonlinear and variable-coefficient wave equations,” SIAM Rev. 15(2), 423 (1973).
17. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Boston, 2007; Mir, Moscow, 1996).
18. X. Han, “Conventional soliton or stretched pulse delivered by nanotube-mode-locked fiber laser,” Appl. Opt. 57, 807–811 (2018).
19. F. Zhao, Y. Wang, H. Wang, Z. Yan, X. Hu, W. Zhang, T. Zhang, and K. Zhou, “Ultrafast soliton and stretched-pulse switchable mode-locked fiber laser with hybrid structure of multimode fiber-based saturable absorber,” Sci. Rep. 8, 16369 (2018).
20. W. L. Li, Y. C. Kong, G. W. Chen, and H. R. Yang, “Coexistence of conventional solitons and stretched pulses in a fiber laser mode-locked by carbon nanotubes,” Laser Phys. 25(4), 045103 (2015).
21. D. A. Dvoretskiy, S. G. Sazonkin, V. S. Voropaev, M. A. Negin, S. O. Leonov, A. B. Pnev, V. E. Karasik, L. K. Denisov, A. A. Krylov, V. A. Davydov, and E. D. Obraztsova, “Generation of ultrashort pulses with minimum duration of 90 fs in a hybrid mode-locked erbium-doped all-fibre ring laser,” Quant. Electron. 46(11), 979–981 (2016) [Kvant. Elektron. 46(11), 979–981 (2016)].
22. D. A. Dvoretskiy, S. G. Sazonkin, I. O. Orekhov, I. S. Kudelin, A. B. Pnev, V. E. Karasik, A. A. Krylov, and L. K. Denisov, “High-energy ultrashort-pulse all-fiber erbium-doped ring laser with improved free-running performance,” J. Opt. Soc. Am. B 35, 2010–2014 (2018).