DOI: 10.17586/1023-5086-2021-88-03-37-43
УДК: 520.8.052
Chromatic component in the modulation transfer function of fully depleted charge-coupled devices
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Митиани Г.Ш. Хроматические искажения частотно-контрастной характеристики в фоточувствительных приборах с зарядовой связью с полным обеднением // Оптический журнал. 2021. Т. 88. № 3. С. 37–43. http://doi.org/10.17586/1023-5086-2021-88-03-37-43
Mitiani G.Sh. Chromatic component in the modulation transfer function of fully depleted charge-coupled devices [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 3. P. 37–43. http://doi.org/10.17586/1023-5086-2021-88-03-37-43
G. Sh. Mitiani, "Chromatic component in the modulation transfer function of fully depleted charge-coupled devices," Journal of Optical Technology. 88(3), 141-145 (2021). https://doi.org/10.1364/JOT.88.000141
The effect of spectrally dependent geometric distortions of images in high-aperture optical systems equipped with thick high-rho charge-coupled devices is studied. Aberration is observed in the near-infrared spectral region (0.9–1.1 µm) due to the optical–geometric properties of the matrices. In this paper we calculate the point spread function and present a model. The effect of aberration is described in terms of the signal processing theory. The effect of antireflective coatings is estimated.
charge-coupled devices, abberations, high-aperture optics
Acknowledgements:The research was supported by the Government of the Russian Federation and Ministry of Science and Higher Education of the Russian Federation within the grant No. (075-15-2020-780 [N13.1902.21.0039]).
The author is specially grateful to S. V. Markelov for his invaluable help in this study.
OCIS codes: 040.1520, 040.3060, 080.1010, 070.6110
References:1. R. J. Stover, M. Wei, and Y. Lee, “Characterization of a fully depleted CCD on high resistivity silicon,” Proc. SPIE 3019, 183–188 (1997).
2. P. R. Jorden, M. Downing, A. Harris, A. Kelt, P. Mistry, and P. Patel, “Improving the red wavelength sensitivity of CCDs,” Proc. SPIE 7742, 77420J (2010).
3. J. A. Fairfield, D. E. Groom, S. J. Bailey, C. J. Bebek, S. E. Holland, A. Karcher, W. F. Koble, W. Lorenzon, and N. A. Roe, “Reduced charge diffusion in thick, fully depleted CCDs with enhanced red sensitivity,” IEEE Trans. Nucl. Sci. 53(6), 3877–3881 (2006).
4. M. A. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovoltaics 3(3), 189–192 (1995).
5. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, Bellingham, 2001), pp. 15–20.
6. B. Burke, P. Jorden, and P. Vu, “CCD technology,” Exp. Astron. 19, 69–102 (2005).
7. H. A. Macleod, Thin-Film Optical Filters (CRC Press, Tucson, 2010), pp. 106–112.
8. P. Holl, R. Hartmann, S. Ihle, G. Kanbach, G. Lutz, I. Ordavo, H. Soltau, A. Stefanescu, and L. Strüder, “pnCCDs for ultra-fast and ultra-sensitive optical and NIR imaging,” AIP Conf. Proc. 984, 115–123 (2007).