ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-05-03-14

УДК: 621.383

Formation of tunable asymmetric three-frequency radiation for a radiophotonic vector network analyzer

For Russian citation (Opticheskii Zhurnal):

Сахбиев Т.Р., Афанасьев В.М., Иванов А.А., Пономарев Р.С., Морозов О.Г., Сахабутдинов А.Ж., Сахабутдинова Г.И., Каримов К.Г. Формирование излучения с перестраиваемым асимметричным трехчастотным спектром для радиофотонного векторного анализатора цепей // Оптический журнал. 2021. Т. 88. № 5. С. 3–14. http://doi.org/10.17586/1023-5086-2021-88-05-03-14

 

Sakhbiev T. R., Afanasyev V. M., Ivanov A. A., Ponomaryov R. S., Morozov O. G., Sakhabutdinov A. Zh., Sakhabutdinova G. I., Karimo, K. G. Formation of tunable asymmetric three-frequency radiation for a radiophotonic vector network analyzer [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 5. P. 3–14. http://doi.org/10.17586/1023-5086-2021-88-05-03-14

For citation (Journal of Optical Technology):

T. R. Sakhbiev, V. M. Afanasyev, A. A. Ivanov, R. S. Ponomarev, O. G. Morozov, A. Zh. Sakhabutdinov, G. I. Sakhabutdinova, and K. G. Karimov, "Formation of tunable asymmetric three-frequency radiation for a radiophotonic vector network analyzer," Journal of Optical Technology. 88(5), 227-235 (2021). https://doi.org/10.1364/JOT.88.000227

Abstract:

The principles of the formation of dual- and three-frequency symmetric and/or asymmetric radiation in the optical range for the construction of optical vector spectrum analyzers are presented. The scanning radiation is formed by modulating single-frequency tunable radiation on dual-port Mach–Zehnder modulators to scan both dual-frequency and three-frequency signals. These research results make it possible to design vector network analyzers to study the spectral features of passive optical elements and devices in a supernarrow spectral region.

Keywords:

optical vector analyzer, asymmetric optical modulation, asymmetry in frequency, asymmetry in amplitude, dual-port Mach–Zehnder modulator

OCIS codes: 300.0300, 060.5625

References:

1. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 1334–1336 (2001).
2. G. VanWiggeren, A. Motamedi, and D. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15, 263–265 (2003).
3. B. H. Kolner and D. W. Dolfi, “Intermodulation distortions and compression in an integrated electro-optic modulator,” Appl. Opt. 26, 3676–3680 (1987).
4. Z. Tang, S. Pan, and J. Yao, “A high-resolution optical vector network analyzer based on a wide-band and wavelength-tunable optical single-sideband modulator,” Opt. Express 20, 6555–6560 (2012).
5. M. Xue and S. L. Pan, “Influence of unwanted first-order sideband on optical vector analysis based on optical single-sideband modulation,” J. Lightwave Technol. 35, 2580–2586 (2017).
6. R. Hernandez, A. Louisa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43, 2418–2421 (2004).
7. J. E. Roman, M. Y. Frankel, and R. D. Esman, “Spectral characterization of fiber gratings with high resolution,” Opt. Lett. 23, 939–941 (1998).
8. M. Xue, Y. Zhao, X. Gu, and S. Pan, “Performance analysis of optical vector analyzer based on optical single-sideband modulation,” J. Opt. Soc. Am. B 30, 928–933 (2013).
9. M. Xue, S. L. Pan, X. W. Gu, and Y. J. Zhao, “Optical single-sideband modulation based on a dual-drive MZM and a 120-degree hybrid coupler,” J. Lightwave Technol. 32, 3317–3323 (2014).
10. W. Li, W. H. Sun, W. T. Wang, L. X. Wang, J. G. Liu, and N. H. Zhu, “Reduction of measurement error of optical vector network analyzer based on DPMZM,” IEEE Photon. Technol. Lett. 26, 866–869 (2014).
11. M. Xue, S. Pan, and Y. Zhao, “Accuracy improvement of optical vector network analyzer based on single-sideband modulation,” Opt. Lett. 39, 3595–3598 (2014).
12. M. Xue, S. Pan, and Y. Zhao, “Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection,” Opt. Lett. 40, 569–572 (2015).
13. S. Li, M. Xue, T. Qing, C. Yu, L. Wu, and S. Pan, “Ultrafast and ultrahigh-resolution optical vector analysis using linearly frequency-modulated waveform and dechirp processing,” Opt. Lett. 44, 3322–3325 (2019).
14. M. Xue, W. Chen, B. Zhu, and S. Pan, “Ultrahigh-resolution optical vector analysis for arbitrary responses using low-frequency detection,” IEEE Photon. Technol. Lett. 30, 1523–1526 (2018).
15. M. Xue, W. Chen, Y. Heng, T. Qing, and S. Pan, “Ultrahigh-resolution optical vector analysis using fixed low-frequency electrical phase-magnitude detection,” Opt. Lett. 43, 3041–3044 (2018).
16. Z. Tang and S. Pan, “A high-resolution optical vector network analyzer with the capability of measuring bandpass devices,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (MWP), 2013, pp. 225–228.
17. M. Xue, S. Pan, and Y. Zhao, “Large dynamic range optical vector analyzer based on optical single-sideband modulation and Hilbert transform,” Appl. Phys. A 122, 197 (2016).
18. V. M. Petrov, A. V. Shamra, I. V. Il’ichev, P. M. Agruzov, V. V. Lebedev, N. D. Gerasimenko, and V. S. Gerasimenko, “Domestic microwave integrated-optics modulators for quantum communications,” Fotonika 14(5), 414–423 (2020).
19. V. M. Petrov, A. V. Shamra, I. V. Il’ichev, N. D. Gerasimenko, V. S. Gerasimenko, P. M. Agruzov, and V. V. Lebedev, “Generation of optical-frequency harmonics for quantum-communication systems at the sidebands,” Fotonika 14(7), 570–582 (2020).
20. M. Xue, S. Pan, C. He, R. Guo, and Y. Zhao, “Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb,” Opt. Lett. 38, 4900–4902 (2013).
21. M. Wang and J. Yao, “Optical vector network analyzer based on unbalanced double-sideband modulation,” IEEE Photon. Technol. Lett. 25, 753–756 (2013).
22. W. Jun, L. Wang, C. Yang, M. Li, N. H. Zhu, J. Guo, L. Xiong, and W. Li, “Optical vector network analyzer based on double-sideband modulation,” Opt. Lett. 42, 4426–4429 (2017).
23. S. Liu, M. Xue, J. Fu, L. Wu, and S. Pan, “Ultrahigh-resolution and wide-band optical vector analysis for arbitrary responses,” Opt. Lett. 43, 727–730 (2018).
24. J. Wen, D. Shi, Z. Jia, Z. Shi, M. Li, N. H. Zhu, and W. Li, “Accuracy-enhanced wide-band optical vector network analyzer based on double-sideband modulation,” J. Lightwave Technol. 37, 2920–2926 (2019).
25. M. Xue, S. Liu, and S. Pan, “High-resolution optical vector analysis based on symmetric double-sideband modulation,” IEEE Photon. Technol. Lett. 30, 491–494 (2018).
26. T. Su, J. Wen, Z. Shi, M. Li, W. Chen, N. Zhu, and W. Li, “Wide-band optical vector network analyzer based on polarization modulation,” Opt. Commun. 437, 67–70 (2019).
27. T. Qing, M. Xue, M. Huang, and S. Pan, “Measurement of optical magnitude response based on double-sideband modulation,” Opt. Lett. 39, 6174–6176 (2014).
28. T. Qing, S. Li, Z. Tang, B. Gao, and S. Pan, “Optical vector analysis with attometer resolution, 90-dB dynamic range and THz bandwidth,” Nat. Commun. 10, 5135 (2019).

29. X. Zou, S. Zhang, H. Wang, J. Liu, Y. Zhang, R. Lu, and Y. Liu, “Self-calibrated electrical measurement of magnitude response of optical filters based on dual-frequency-shifted heterodyne,” Opt. Eng. 55, 56105 (2016).
30. X. Zou, S. Zhang, H. Wang, Z. Zhang, J. Li, Y. Zhang, S. Liu, and Y. Liu, “Wide-band and high-resolution measurement of magnitude-frequency response for optical filters based on fixed-low-frequency heterodyne detection,” IEEE Photon. J. 9, 5501209 (2017).
31. X. Zou, S. Zhang, Z. Zhang, Z. J. Ye, R. Lu, D. Chen, S. Liu, H. Li, and Y. Liu, “Hyperfine intrinsic magnitude and phase response measurement of optical filters based on electro-optical harmonics heterodyne and Wiener-Lee transformation,” J. Lightwave Technol. 37, 2654–2660 (2018).
32. T. Qing, S. Li, M. Xue, N. Zhu, and S. Pan, “Optical vector analysis based on asymmetrical optical double-sideband modulation using a dual-drive dual-parallel Mach–Zehnder modulator,” Opt. Express 25, 4665–4671 (2017).
33. T. Qing, S. Li, S. Pan, and M. Xue, “Optical vector analysis based on double-sideband modulation and stimulated Brillouin scattering,” Opt. Lett. 41, 3671–3674 (2016).
34. Z. Chen, L. Ye, J. Dai, T. Zhang, F. Yin, Y. Zhou, and K. Xu, “Long-term measurement of high-Q optical resonators based on optical vector network analysis with Pound–Drever–Hall technique,” Opt. Express 26, 26888 (2018).
35. J. Dai, Z. Chen, X. Wang, L. Ye, T. Zhang, and K. Xu, “Accurate optical vector network analyzer based on optical double-sideband suppressed carrier modulation,” Opt. Commun. 447, 61–66 (2019).
36. O. G. Morozov, I. I. Nureev, A. Z. Sakhabutdinov, R. S. Misbakhov, T. R. Sakhbiev, R. Nurullin, S. Papazyan, and L. M. Sarvarova, “Optical vector analyzer based on carrier-suppressed double-sideband modulation and phase-shift fiber Bragg grating,” Proc. SPIE 11146, 111460R (2018).
37. O. G. Morozov, I. I. Nureev, A. Z. Sakhabutdinov, R. S. Misbakhov, and S. G. Papazyan, “Optical vector analyzer based on double-side modulation with a suppressed carrier and phase-shift FBG,” in Systems of Signals Generating and Processing in the Field of on Board Communications, 2019.
38. O. Morozov, A. Sakhabutdinov, I. Nureev, and S. Papazyan, “Optical vector analyzer for characterization of Fano resonance structures based on unbalanced double-sideband modulation,” ITM Web Conf. 30, 14003 (2019).
39. O. Morozov, I. Nureev, A. Sakhabutdinov, A. Kuznetsov, G. Morozov, G. Il’in, S. Papazyan, A. Ivanov, and R. Ponomarev, “Ultrahigh-resolution optical vector analyzers,” Photonics 7, 14 (2020).
40. MZDD-LN-10 dual-drive 10 GHz intensity modulator, https://www.symphotony.com/wp-content/uploads/MZDD-LN-10.pdf.
41. 10 Gb/s dual drive Mach–Zehnder (DDMZ) modulator from JDS Uniphase Corporation, https://pdf.dzsc.com/20130115/21084655-001_2155076.pdf.
42. MXIQ-LN-40 dual-drive parallel optical Mach–Zehnder modulator, https://www.symphotony.com/wp-content/uploads/MXIQ-LN-40.pdf.
43. A. A. Sevast’yanov, O. G. Morozov, A. A. Talipov, E. P. Denisenko, T. S. Sadeev, S. A. Gorodilov, M. R. Nurgazizov, and P. E. Denisenko, “The forming of multifrequency radiation in a dual-drive Mach–Zehnder modulator,” Nauchno-Tekh. Vestn. Povolzh’ya (4), 232–236 (2013).
44. O. G. Morozov, A. Zh. Sakhabutdinov, I. I. Nureev, and V. V. Sadchikov, “Mathematical model of the scanning of an arbitrary resonance contour with continuous three-frequency laser radiation,” Fiz. Volnovykh Protsessov Radiotekh. Sist. 22(4), 106–113 (2019).
45. O. G. Morozov, “Symmetric dual-frequency reflectometry in laser systems for monitoring the parameters of natural and artificial media,” Doctoral dissertation (KNITU-KAI, Kazan’, 2004).
46. I. I. Nureev, “Vector analyzer of the characteristics of fiber Bragg gratings based on amplitude–phase conversion of optical carriers,” Fiz. Volnovykh Protsessov Radiotekh. Sist. 18(3–2), 76–80 (2015).
47. A. Zh. Sakhabutdinov, “Characterization of Fano resonance of refractometric sensors based on annular fiber Bragg gratings with p shift: modeling results,” Inzh. Vestn. Dona (2), 38 (2018).
48. V. V. Shcherbakov, A. F. Solodkov, and A. A. Zadernovski, “Generation of optical signals stable against dispersion degradation of power,” RÉNSIT (Radioelektron. Nanosist.) 11(2), 161–176 (2019).