DOI: 10.17586/1023-5086-2022-89-01-33-46
УДК: 535, 535.3, 543.4
Fast image restoration method for a simple optical system using phase diversity technique
Full text on elibrary.ru
Publication in Journal of Optical Technology
W. B. Jing, G. M. Cao, B. K. Huang, J. M. Zhang, S. Y. Tian, and C. X. Wang Fast image restoration method for a simple optical system using phase diversity technique (Быстрое восстановление изображения с использованием метода фазового разнесения для простой оптической системы) [на англ. яз.] // Оптический журнал. 2022. Т. 89. № 1. С. 33–46. http://doi.org/10.17586/1023-5086-2022-89-01-33-46
W. B. Jing, G. M. Cao, B. K. Huang, J. M. Zhang, S. Y. Tian, and C. X. Wang Fast image restoration method for a simple optical system using phase diversity technique (Быстрое восстановление изображения с использованием метода фазового разнесения для простой оптической системы) [in English] // Opticheskii Zhurnal. 2022. V. 89. № 1. P. 33–46. http://doi.org/10.17586/1023-5086-2022-89-01-33-46
W. B. Jing, G. M. Cao, B. K. Huang, J. M. Zhang, S. Y. Tian, and C. X. Wang, "Fast image restoration method for a simple optical system using a phase diversity technique," Journal of Optical Technology. 89(1), 23-32 (2022). https://doi.org/10.1364/JOT.89.000023
We propose an image restoration method for correcting the fixed optical aberration of the simple optical system using the dual-channel phase diversity and the calibrated single-channel restoration factor to speed up the image restoration. The point-spread function, which is estimated in advance with the dual-channel phase diversity, serves as the known blur kernel of the simpleoptical system. In the frequency domain, the single-channel restoration factor of the simple optical system is constructed to restore the blurred image quickly. Our approach needing only twice Fourier transforms without iterative optimization can directly and rapidly restore the blurred image of the simple optical system. The experimental results are performed to verify the fast image restoration ability of the single-channel fast image restoration. The experimental results indicate that the single-channel fast image restoration can indeed obtain comparable image quality as the dualchannel image restoration, but significantly reduce the time of image restoration.
simple optical system, image restoration, phase diversity, optical aberration
OCIS codes: 080.1010, 100.3020, 110.6770, 110.1758
References:1. Zheng G., Horstmeyer R., Yang C. Wide-field, high-resolution Fourier ptychographic microscopy // Nat. Photonics. 2013. V. 7. № 9. P. 739–745.
2. Sun J.S., Qian C., Zhang Y.Z., Zhao Z. Efficient positional misalignment correction method for Fourier ptychographic microscopy // Biomed. Opt. Exp. 2016. V. 7. №. 4. P. 1336–1350.
3. Faulkner H.M.L., Rodenburg J.M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm // Phys. Rev. Lett. 2004. V. 93. № 2. P. 023903.
4. Shen C., Bao X.J., Tan J.B., Liu S.T. Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint // Opt. Exp. 2017. V. 25. № 14. P. 16235.
5. Shao X., Dai X., He X. Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation // Opt. Lasers Eng. 2015. V. 71. P. 9–19.
6. Schuler C.J., Hirsch M., Harmeling S., Scholkopf B. Non-stationary correction of optical aberrations // ICCV. Barcelona, Spain. 2011. P. 659–666.
7. Heide F., Rouf M., Hullin M.B., Labitzke B. High-quality computational imaging through simple lenses // ACM Trans. Graph. 2013. V. 32. № 5. P. 1–14.
8. Li W.L., Yin X.Q., Liu Y., Zhang M.J. Computational imaging through chromatic aberration corrected simple lenses // J. Mod. Opt. 2017. V. 64. № 20. P. 2211–2220.
9. Cui J., Huang W. Optical aberration correction for simple lenses via sparse representation // Opt. Commun. 2018. V. 412. P. 201–213.
10. Peng Y.F., Fu Q., Amata H. Computational imaging using lightweight diffractive-refractive optics // Opt. Exp. 2015. V. 23. № 24. P. 31393.
11. Heide F., Fu Q., Peng Y.F. Encoded diffractive optics for full-spectrum computational imaging // Sci. Rep. 2016. V. 6. № 1.
12. Nikonorov A., Evdokimova V.V., Petrov M. Deep learning-based imaging using single-lens and multi-aperture diffractive optical systems // ICCVW. Seul, Korea. 2019. P. 3969–3977.
13. Peng Y.F., Sun Q.L., Dun X. Learned large field-of-view imaging with thin-plate optics // ACM Trans. Graph. 2019. V. 38. № 6. P. 1–14.
14. Schmidt J.D., Jackovitz K., Riley J.T. Real-time image restoration for space-object imaging // Appl. Opt. 2019. V. 58. № 25. P. 6983.
15. Zhang P.G., Yang C.L., Xu Z. H. Hybrid particle swarm global optimization algorithm for phase diversity phase retrieval // Opt. Exp. 2016. V. 24. № 22. P. 25704.
16. Dolne J.J., Menicucci P., Miccolis D. Advanced image processing and wavefront sensing with real-time phase diversity // Appl. Opt. 2009. V. 48. № 1. P. A30.
17. Védrenne N., Mugnier L.M., Michau V. Laser beam complex amplitude measurement by phase diversity // Opt. Exp. 2014. V. 22. № 4. P. 4575
18. Zhang D., Zhang X.B., Xu S.Y. Simplified phase diversity algorithm based on a first-order Taylor expansion // Appl. Opt. 2017. V. 55. № 28. P. 7872.
19. Cheng Q., Zhang Y.D., Gao W. Restoration of broadband light illumination image using phase diversity technology // AOMATT. Harbin, China. 2014. V. 9282. P. 928206.
20. Zhang S., Wang B., Zhao J. High resolution optical image restoration for ground-based large telescope using phase diversity speckle // Optik. 2014. V. 125. № 2. P. 861–864.
21. von Zernike F. Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode // Physica. 1934. Bd. 1. № 7. S. 689–704.
22. Noll R.J. Zernike polynomials and atmospheric turbulence // JOSA. 1976. V. 66. № 3. P. 207–211.
23. Janout P., Páta P., Skala P. PSF estimation of space-variant ultra-wide field of view imaging systems // Appl. Sci. 2017. V. 7. № 2. P. 151.
24. Roggemann M.C. Imaging through turbulence // Opt. Eng. 1996. V. 35. № 11. P. 3361.
25. Gonsalves R.A. Phase retrieval and diversity in adaptive optics // Opt. Eng. 1982. V. 21. № 5. P. 19–22.
26. Paxman R.G., Schulz T.J., Fienup J.R. Joint estimation of object and aberrations by using phase diversity // JOSA. A. 1992. V. 9. № 7. P. 1072–1085.
27. Ma X.X., Wang J.L., Wang B. Phase diversity for calibrating noncommon path aberrations of adaptive optics system under nonideal measurement environment // Optik. 2014. V. 125. № 17. P. 5029–5035.
28. Gilles L., Vogel C.R., Bardsley J.M. Computational methods for a large-scale inverse problem arising in atmospheric optics // Inverse Probl. 2006. V. 18. № 1. P. 237–252.
29. Liu D.C., Nocedal J. On the limited memory BFGS method for large scale optimization // Math. Program. 1989. V. 45. № 1–3. P. 503–528.
30. Xie X.F., Zhou J., Wu Q.Z. Assess image blur in photoelectric imaging system // 5th Int. Symp. Adv. Opt. Manuf. Test. Technol. Dalian, China. 2010. V. 7658. P. 765803–765806.
31. Shannon C.E. A mathematical theory of communication // Bell Syst. Tech. J. 1948. V. 27. № 3. P. 379–423.
32. Barnum H., Barrett J., Clark L.O. Entropy and information causality in general probabilistic theories // New J. Phys. 2010. V. 12. № 3. P. 033024.
33. Huang W., Jing Z. Evaluation of focus measures in multi-focus image fusion // Pattern Recognit. Lett. 2007. V. 28. № 4. P. 493–500.
34. Zhao M.H., Zhang X., Shi Z.H. Border ringing effects suppression of a restored image with sine integral fitting // J. Image Graph. V. 22. № 2. P. 0249–0256.
35. Song P., Jiang S.W., Zhang H. Full-field Fourier ptychography (FFP): Spatially varying pupil modeling and its application for rapid field-dependent aberration metrology // APL Photonics. 2019. V. 4. № 5. P. 050802.