ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-10-68-79

УДК: 519.688

Evaluating and testing neural-network algorithm capabilities for automating image data analysis for remote sensing of the Earth

For Russian citation (Opticheskii Zhurnal):

Мингалев А.В., Белов А.В., Габдуллин И.М., Марданова Д.А., Агафонова Р.Р., Шушарин С.Н., Шлеймович М.П. Оценка и тестирование возможностей нейросетевых алгоритмов для обеспечения автоматизации дешифрирования графической информации в комплексах дистанционного зондирования Земли // Оптический журнал. 2022. Т. 89. № 10. С. 68–79.


Mingalev A.V., Belov A.V., Gabdullin I.M., Mardanova D.A., Agafonova R.R., Shusharin S.N., Shleimovich M.P. Evaluating and testing neural-network algorithm capabilities for automating image data analysis for remote sensing of the Earth  [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 10. P. 68–79.

For citation (Journal of Optical Technology):

A. V. Mingalev, A. V. Belov, I. M. Gabdullin, D. A. Mardanova, R. R. Agafonova, S. N. Shusharin, and M. P. Shleimovich, "Evaluating and testing neural-network algorithm capabilities for automating image data analysis for remote sensing of the Earth," Journal of Optical Technology. 89(10), 607-614 (2022).


Subject of study. Results of comparative analysis and testing of the application capabilities of several neural network detection algorithms, programming interfaces, and machine learning libraries for real-time analysis of graphical data from scanning thermal imaging surveying systems are presented. Method. The availability of programming interfaces for integration and adaptation of algorithms into the developed software, data processing rate, and object detection accuracy were selected as the main criteria for assessing the detection algorithms. These criteria were evaluated using practical experiments involving training and running neural network algorithms on test software using computers with different configurations. Main results. Modern neural network algorithms were demonstrated to enable image data processing with detection accuracy for specified object classes, which is sufficient for the automation of image recognition aimed at real-time processing of images from scanning thermal imaging surveying systems. Practical significance. The results of the investigation and tests presented in this study can be advantageous and reduce the time required for developers to find base neural network algorithms suitable for a practical implementation of automation aimed at image processing. Implementation of the considered algorithms in the developed software enables image analysis and processing in real time during surveillance owing to a reduction in the amount of data processed by the operator, thus enabling the removal of the post-processing stage from the technological sequence of the surveillance.


neural network algorithms, object detection, machine learning, scanner thermal imaging systems

OCIS codes: 150.0150, 100.0100


1. J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs for modern convolutional object detectors,” arXiv, arXiv:1611.10012v3 (2017).
2. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “MobileNets: efficient convolutional neural networks for mobile vision applications,” arXiv, arXiv:1704.04861v1 (2017).
3. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: inverted residuals and linear bottlenecks,” arXiv, arXiv:1801.04381v4 (2019).
4. J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” arXiv, arXiv:1612.08242v1 (2016).
5. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: optimal speed and accuracy of object detection,” arXiv, arXiv:2004.10934 (2020).
6. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” in Advances in Neural Information Processing Systems (2015), pp. 91–99.
7. “ImageNet Large Scale Visual Recognition Challenge 2017,”
8. T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft COCO: common objects in context,” arXiv, arXiv:1405.0312v3 (2015).
9. OpenCV,
10. TensorFlow,
11. Open Neural Network Exchange,
12. NVIDIA TensorRT SDK,
13. Caffe—Deep learning framework,
14. Darknet: open source neural networks in C,
15. Intel,
16. A. V. Mingalev, A. V. Belov, I. M. Gabdullin, R. R. Agafonova, and S. N. Shusharin, “Test-object recognition in thermal images,” Komp. Opt. 43(3), 402–411 (2019).
17. “Computer vision and machine learning,”
18. K. Boyd, K. H. Eng, and C. D. Page, “Area under the precision-recall curve: point estimates and confidence intervals,” Lect. Notes Comput. Sci. 8190, 451–466 (2013).
19. T. Saito and M. Rehmsmeier, “The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets,” PLoS One 10(3), e0118432 (2015).
20. “TensorFlow MobileNet v1,”

21. “TensorFlow MobileNet v2,”
22. “TensorFlow Inception v2,”
23. A. Bochkovskiy, “Darknet YOLO v4,”
25. A. Bochkovskiy, “Darknet YOLO v4,”