DOI: 10.17586/1023-5086-2022-89-11-03-16
УДК: 537.63, 535.14
Effect of plasmonic-shell nanoparticles on the nonradiative transfer of electron excitation energy in donor/acceptor pairs
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кучеренко М.Г., Налбандян В.М., Мушин Ф.Ю., Чмерева Т.М. Влияние плазмонных оболочечных наночастиц на безызлучательный перенос энергии электронного возбуждения в донорно-акцепторной паре // Оптический журнал. 2022. Т. 89. № 11. С. 3–16. http://doi.org/10.17586/1023-5086-2022-89-11-03-16
Kucherenko M.G., Nalbandyan V.M., Mushin F.Yu., Chmereva T.M. Effect of plasmonic-shell nanoparticles on the nonradiative transfer of electron excitation energy in donor/acceptor pairs [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 11. P. 3–16. http://doi.org/ 10.17586/1023-5086-2022-89-11-03-16
M. G. Kucherenko, V. M. Nalbandyan, F. Yu. Mushin, and T. M. Chmereva, "Effect of plasmonic-shell nanoparticles on the nonradiative transfer of electron excitation energy in donor/acceptor pairs," Journal of Optical Technology. 89(11), 642-650 (2022). https://doi.org/10.1364/JOT.89.000642
Subject of study. Nonradiative energy transfer between donor and acceptor centers located in the vicinity of a spherical nanoparticle with a dielectric core and a metallic shell are studied. Aim of study. We present theoretical research on nonradiative energy transfer in a system consisting of a nanoparticle reflector with a dielectric core and a metal shell; a donor that may be an organic molecule or quantum dot; and an acceptor that may be another molecule, quantum dot, or nanoparticle with highly dissipative properties. Methods. A quantum mechanical and electrodynamic model was developed in order to calculate the energy transport rate; the electrodynamic model is also valid in the presence of an external magnetic field. Main results. We determine the system parameters that will maximize the efficiency of energy transfer between system components. We show that, under resonant conditions, the energy transfer rate from the donor to the acceptor in the presence of a relay nanoparticle is up to 3 orders of magnitude higher than it is in the case of a homogeneous dielectric medium free of nanoparticles. Practical significance. These results have a variety of practical applications, especially in the development of photoelectronic devices based on plasmon-accelerated energy transfer between components of a functional nanosystem.
donor-acceptor pair, nonradiative energy transfer, quantum dot, multi-layer nanoparticle, magnetic field
Acknowledgements:Theoretical research was supported by the Ministry of science and higher education of RF, project No. FSGU-2020-0003.
OCIS codes: 250.5403, 270.5580
References:1. V. V. Klimov, Nanoplasmonics (Pan Stanford, Singapore, 2014) [Fizmatlit, Moscow, 2009].
2. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, Cambridge, 2008) [Fizmatlit, Moscow, 2011].
3. T. Sen and A. Patra, “Resonance energy transfer from rhodamine 6G to gold nanoparticles by steady-state and time-resolved spectroscopy,” J. Phys. Chem. C 112(9), 3216–3222 (2008).
4. T. Davis, D. Gómez, and K. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81(4), 045432 (2010).
5. Q. Huang, J. Chen, J. Zhao, J. Pan, W. Lei, and Z. Zhang, “Enhanced photoluminescence property for quantum dot-gold nanoparticle hybrid,” Nanoscale Res. Lett. 10(1), 400 (2015).
6. A. N. Kamalieva, N. A. Toropov, K. V. Bogdanov, and T. A. Vartanyan, “Enhancement of fluorescence and Raman scattering in cyanine-dye molecules on the surface of silicon-coated silver nanoparticles,” Opt. Spectrosc. 124(3), 319–322 (2018) [Opt. Spektrosk. 124(3), 324–327 (2018)].
7. C. M. Briskina, A. P. Tarasov, V. M. Markushev, and M. A. Shiryaev, “Magnetic field influence on the intensity of ZnO random lasing and exciton luminescence,” J. Nanophot. 12(4), 043506 (2018).
8. M. G. Kucherenko and V. M. Nalbandyan, “Luminescence of a two-particle complex from a spherical quantum dot and plasmon nanoglobule in an external magnetic field,” Opt. Spectrosc. 128(11), 1910–1917 (2020) [Opt. Spektrosk. 128(11), 1776–1783 (2020)].
9. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
10. M. G. Kucherenko, D. A. Kislov, and T. M. Chmereva, “Possibilities of improving the characteristics of the scanning near-field optical microscope due to the plasmon-resonance increase of the nonradiative energy transfer rate,” Nanotechnol. Russ. 7(3–4), 196–204 (2012) [Ross. Nanotekhnol. 7(3–4), 111–117 (2012)].
11. E.-K. Lee, J.-H. Song, K.-Y. Jeong, and M.-K. Seo, “Design of plasmonic nano-antenna for total internal reflection fluorescence microscopy,” Opt. Express 21(20), 23036–23047 (2013).
12. Y. B. Lee, S. H. Lee, S. Y. Park, C. J. Park, K.-S. Lee, J. Kim, and J. Joo, “Luminescence enhancement by surface plasmon assisted Förster resonance energy transfer in quantum dots and light emitting polymer hybrids with Au nanoparticles,” Synth. Met. 187, 130–135 (2014).
13. J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
14. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
15. V. N. Pustovit and T. V. Shahbazyan, “Resonance energy transfer near metal nanostructures mediated by surface plasmons,” Phys. Rev. B 83(8), 085427 (2011).
16. L.-Y. Hsu, W. Ding, and G. C. Schatz, “Plasmon-coupled resonance energy transfer,” J. Phys. Chem. Lett. 8(10), 2357–2367 (2017).
17. S. V. Izmodenova, D. A. Kislov, and M. G. Kucherenko, “Accelerated nonradiative electron-excitation energy transfer between molecules in aqueous pools of reverse micelles containing encapsulated silver nanoparticles,” Colloid J. 76(6), 683–693 (2014). [Kolloidn. Zh. 76(6), 734–744 (2014)].
18. M. G. Kucherenko, V. N. Stepanov, and N. Yu. Kruchinin, “Intermolecular nonradiative energy transfer in clusters with plasmonic nanoparticles,” Opt. Spectrosc. 118(1), 103–110 (2015) [Opt. Spektrosk. 118(1), 107–114 (2015)].
19. N. Aissaoui, K. Moth-Poulsen, M. Käll, P. Johansson, L. M. Wilhelmsson, and B. Albinsson, “FRET enhancement close to gold nanoparticles positioned in DNA origami constructs,” Nanoscale 9(2), 673–683 (2017).
20. E. S. Andrianov, A. P. Vinogradov, A. V. Dorofeenko, A. A. Zyablovski˘ı, A. A. Lisyanski˘ı, and A. A. Pukhov, Quantum Nanoplasmonics (Izdatels’ski˘ı Dom “Intellekt,” Dolgoprudny˘ı, Moscow Oblast, Russia, 2015).
21. A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino, A. R. Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi, “Gain functionalized core–shell nanoparticles: the way to selectively compensate absorptive losses,” J. Mater. Chem. 22(18), 8846–8852 (2012).
22. W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
23. Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive biomolecular sensors,” Opt. Commun. 349, 193–197 (2015).
24. M. S. Shishodia, B. D. Fainberg, and A. Nitzan, “Theory of energy transfer interactions near sphere and nanoshell based plasmonic nanostructures,” Proc. SPIE 8096, 116–131 (2011).
25. M. S. Shishodia and S. Juneja, “Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle,” J. Appl. Phys. 119(20), 203104 (2016).
26. M. S. Shishodia and S. Juneja, “Surface plasmon enhanced electric field versus Förster resonance energy transfer near core-shell nanoparticle,” J. Appl. Phys. 125(21), 213104 (2019).
27. P. Rajput and M. S. Shishodia, “Förster resonance energy transfer and molecular fluorescence near gain assisted refractory nitrides based plasmonic core-shell nanoparticle,” Plasmonics 15(6), 2081–2093 (2020).
28. A. Synak, L. Kulak, P. Bojarski, and A. Schlichtholz, “Förster energy transfer in core–shell nanoparticles: theoretical model and Monte Carlo study,” J. Phys. Chem. C 125(33), 18517–18525 (2021).
29. T. M. Chmereva and M. G. Kucherenko, “Influence of conducting nanocylinder on resonance energy transfer in donor-acceptor pair of molecules,” Opt. Spectrosc. 110(5), 767–774 (2011) [Opt. Spektrosk. 110(5), 819–826].
30. T. M. Chmereva and M. G. Kucherenko, “Intermolecular non-radiative electronic excitation energy transfer near a conductive film,” Russ. Phys. J. 57(10), 1428–1435 (2015).
31. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland, Amsterdam, 1982) [Nauka, Moscow, 1978)].
32. I. Yu. Goliney, V. I. Sugakov, L. Valkunas, and G. V. Vertsimakha, “Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria,” Chem. Phys. 404, 116–122 (2012).
33. A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82, 035411 (2010).
34. G. E. Dobretsov, Fluorescent Probes for Studying Cells, Membranes, and Lipoproteins (Nauka, Moscow, 1989).
35. M. G. Kucherenko, V. M. Nalbandyan, and T. M. Chmereva, “Features of the formation of radiation spectra of two-particle nanosystems in a magnetic field,” Opt. Spectrosc. 130(5), 593–601 (2022) [Opt. Spektrosk. 130(5), 745–753 (2022)].
36. V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975).
37. M. G. Kucherenko, V. M. Nalbandyan, and T. M. Chmereva, “Luminescence of a complex composed of a quantum dot and a layered plasmon nanoparticle in a magnetic field,” J. Opt. Technol. 88(9), 489–496 (2021) [Opt. Zh. 88(9), 9–19 (2021).
38. M. G. Kucherenko and V. M. Nalbandyan, “Formation of the spectral contour width of nanoparticles plasmon resonance by electron scattering on phonons and a boundary surface,” Eurasian Phys. Tech. J. 15(2(30)), 37–39 (2018).