ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-11-61-69

УДК: 621.373.826

1.55-µm range optical transmitter based on a vertical-cavity surface-emitting laser

For Russian citation (Opticheskii Zhurnal):

Блохин С.А., Бабичев А.В., Карачинский Л.Я., Новиков И.И., Блохин А.А., Бобров М.А., Ковач Я.Н., Малеев Н.А., Куликов А.В., Бугров В.Е., Варжель С.В., Воропаев К.О., Устинов В.М., Егоров А.Ю. Оптический передатчик спектрального диапазона 1,55 мкм на основе вертикально-излучающего лазера // Оптический журнал. 2022. Т. 89. № 11. С. 61–69.


Blokhin S.A., Babichev A.V., Karachinsky L.Ya., Novikov I.I., Blokhin A.A., Bobrov M.A., Kovach Ya.N., Maleev N.A., Kulikov A.V., Bougrov V.E., Varzhel S.V., Voropaev K.O., Ustinov V.M., Egorov A.Yu. 1.55-µm range optical transmitter based on a vertical-cavity surface-emitting laser [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 11. P. 61–69.

For citation (Journal of Optical Technology):

S. A. Blokhin, A. V. Babichev, L. Ya. Karachinsky, I. I. Novikov, A. A. Blokhin, M. A. Bobrov, Y. N. Kovach, N. A. Maleev, A. V. Kulikov, V. E. Bougrov, S. V. Varzhel, K. O. Voropaev, V. M. Ustinov, and A. Yu. Egorov, "1.55-µm range optical transmitter based on a vertical-cavity surface-emitting laser," Journal of Optical Technology. 89(11), 681-686 (2022).


Subject of study. A high-speed fiber-optic transmitter for the spectral range of 1.55 µm, based on a vertical-cavity surface-emitting laser (VCSEL) fabricated using wafer fusion technology was investigated. Aim of study. A comprehensive study of the parameters of the 1.55-µm range optical transmitter based on a VCSEL at room temperature is presented. Method. The heterostructure of the VCSEL was fabricated using molecular beam epitaxy and wafer fusion technology. The transmitter parameters were investigated with current modulation by a large signal in the non-return-to-zero (NRZ) format. Main results. At 20°C, the transmitter demonstrated maximum output optical power, exceeding 1 mW at the fiber output in single-mode operation. The maximum data rate over a short communication line based on an SMF-28 fiber with current amplitude modulation in the NRZ format reached 30 Gbits/s, limited by the modulation bandwidth reaching a value of approximately 12 GHz (at −3dB level). With an increase in the length of the fiber-optic communication line, the chromatic dispersion of the fiber and the chirp effect of the laser increase inter-symbol interference, which ultimately limits the speed and range of optical data transmission. Practical significance. The investigated fiber-optic transmitters are promising for both digital and analog transmission of high-frequency optical signals over fiber-optic communication lines.


vertical-cavity surface-emitting laser, plate sintering, single-mode mode, amplitude modulation, optical data transmission


The research of ITMO University authors was supported by the program "Priority 2030" in terms of the research of some dynamic characteristics, and also by the Ministry of science anf higher education of the Russian Federation, project No. 2019-1442 in terms of the research of some static characteristics. 

OCIS codes: 140.5960, 250.5960, 140.7260, 250.7260, 160.6000, 060.4080, 060.4510


1. B. D. Padullaparthi, J. Tatum, and K. Iga, VCSEL Industry: Communication and Sensing (Wiley-IEEE Press, Hoboken, 2021).
2. L. Zhang, J. Van Kerrebrouck, R. Lin, et al., “Nonlinearity tolerant high-speed DMT transmission with 1.5-μm single-mode VCSEL and multi-core fibers for optical interconnects,” J. Lightwave Technol. 37(2), 380–388 (2019).
3. R. Michalzik, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, Berlin, 2013).
4. S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, and M.-C. Amann, “Single-mode high-speed 1.5-μm VCSELs,” J. Lightwave Technol. 35(4), 727–733 (2017).
5. M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
6. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, and E. Kapon, “Control of cavity lifetime of 1.5 μm wafer-fused VCSELs by digital mirror trimming,” Opt. Express 22, 32180–32187 (2014).
7. A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
8. A. V. Babichev, L. Y. Karachinsky, I. I. Novikov, A. G. Gladyshev, S. A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J. P. Turkiewicz, K. O. Voropaev, A. S. Ionov, M. Agustin,N. N. Ledentsov, and A. Y. Egorov, “6-mW single-mode high-speed 1550-nm wafer-fused VCSELs for DWDM application,” IEEE J. Quantum Electron. 53(6), 2400808 (2017).
9. A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, and E. Kapon, “8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band,” Opt. Express 19(18), 16996–17001 (2011).
10. S. A. Blokhin, M. A. Bobrov, A. A. Blokhin, A. G. Kuzmenkov, N. A. Maleev, V. M. Ustinov, E. S. Kolodeznyi, S. S. Rochas, A. V. Babichev, I. I. Novikov, A. G. Gladyshev, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, and A. Yu. Egorov, “Analysis of the internal optical losses of the vertical-cavity surface-emitting laser of the spectral range of 1.55 μm formed by a plate sintering technique,” Opt. Spectrosc. 127(1), 140–144 (2019) [Opt. Spektrosk. 127(1), 145–149 (2019)].
11. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, G. Abstreiter, and M.-C. Amann, “Low-resistance InGa(Al)As tunnel junctions for long wavelength vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys. 39, 1727 (2000).
12. S. A. Blokhin, S. N. Nevedomsky, M. A. Bobrov, N. A. Maleev, A. A. Blokhin, A. G. Kuzmenkov, A. P. Vasyl’ev, S. S. Rohas, A. V. Babichev, A. G. Gladyshev, I. I. Novikov, L. Ya. Karachinsky, K. O. Voropaev, D. V. Denisov, A. S. Ionov, A. Yu. Egorov, and V. M. Ustinov, “1.55-μm-range vertical-cavity surface-emitting lasers, manufactured by wafer fusion of heterostructures grown by solid-source molecular-beam epitaxy,” Semiconductors 54, 1276–1283 (2020).
13. K. O. Voropaev, B. I. Seleznev, A. Yu. Prokhorov, A. S. Ionov, and S. A. Blokhin, “The fabrication technology of VCSELs emitting in the 1.55-μm waveband,” J. Phys. Conf. Ser. 1658(1), 012069 (2020).
14. S. N. Lipnitskaya, A. E. Romanov, V. E. Bugrov, and D. A. Bauman, “Calculation and optimization of an optical system for radiation coupling into a single-mode optical fiber,” J. Opt. Technol. 86(5), 273–277 (2019) [Opt. Zh. 86(5), 17–22 (2019)].
15. R. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. 3(6), 1180–1192 (1985).
16. T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. Tafur Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol. 17(1), 41–45 (2011).
17. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 18(4), 582–595 (1982).
18. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2005).
19. D. M. Kuchta, T. N. Huynh, F. E. Doany, L. Schares, C. W. Baks, C. Neumeyr, A. Daly, B. Kögel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530-nm VCSEL link,” J. Lightwave Technol. 34(14), 3275–3282 (2016).