ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-11-76-83

УДК: 681.7.05

Chemical–mechanical surface treatment method for high-quality crystalline whispering gallery mode microresonators

For Russian citation (Opticheskii Zhurnal):

Миньков К.Н., Данилин А.Н., Шитиков А.Е., Горелов И.К., Галкин М.Л., Мантузов А.В., Артемов Е.А., Красивская М.И., Лобанов В.Е., Биленко И.А. Метод химико-механической обработки поверхности высокодобротных кристаллических микрорезонаторов c модами типа шепчущей галереи // Оптический журнал. 2022. Т. 89. № 11. С. 76–83. http://doi.org/10.17586/1023-5086-2022-89-11-76-83

 

Minkov K.N., Danilin A.N., Shitikov A.E., Gorelov I.K., Galkin M.L., Mantuzov A.V., Artemov E.A., Krasivskaya M.I., Lobanov V.E., Bilenko I.A. Chemical–mechanical surface treatment method for high-quality crystalline whispering gallery mode microresonators [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 11. P. 76–83. http://doi.org/10.17586/1023-5086-2022-89-11-76-83

For citation (Journal of Optical Technology):

K. N. Minkov, A. N. Danilin, A. E. Shitikov, I. K. Gorelov, M. L. Galkin, A. V. Mantuzov, E. A. Artemov, M. I. Krasivskaya, V. E. Lobanov, and I. A. Bilenko, "Chemical–mechanical surface treatment method for high-quality crystalline whispering gallery mode microresonators," Journal of Optical Technology. 89(11), 691-695 (2022). https://doi.org/10.1364/JOT.89.000691

Abstract:

Subject of study. A novel method for the surface treatment of high-quality crystalline optical microresonators with whispering gallery modes (WGMs) based on chemical–mechanical polishing using magnesium fluoride microresonators is proposed. The proposed method can be applied to brittle and soft materials. Aim of study. The study aimed to develop a new effective method for the surface treatment of crystalline WGM microresonators based on asymptotic chemical–mechanical polishing. Methods. Magnesium fluoride resonators fabricated by diamond turning were polished using the chemical–mechanical polishing process. The values of the quality factor (Q-factor) and roughness were measured using independent methods to determine the numerical relationship between them: roughness was measured using an interference microscope, and the Q-factor was determined based on the half-width of the resonant power dip at critical coupling. The focus was on the investigation of the properties of the polished suspension: the size distribution of the suspended particles was determined before polishing using the dynamic light scattering method and a scanning electron microscope. Main results. A novel surface treatment method for high-quality crystalline optical WGM microresonators that reduces the polishing time by at least three times has been developed and successfully applied. The proposed method ensures the fabrication of resonators with a small radius and a Q-factor of at least 1×109 and helps maintain their shapes. The surface roughness along the resonator generatrix after chemical–mechanical polishing was ∼5nm, which corresponds to 1–1.5 unit cells of the crystal. Practical significance. The chemical–mechanical polishing method helps reduce the polishing time and improve the surface quality of complex structures. In addition, it can facilitate the automation of the microresonator fabrication process.

Keywords:

optical microresonators, whispering gallery modes, optical frequency combs, chemico-mechanical polishing, Q-factor measurement

Acknowledgements:

The research was supported by the grant of RSF No. 21-72-00132 with the use of the equipment of Shared Knowledge Center of All-Russian Research Institute for Optical and Physical Measurements and Shared Knowledge Center "High resolution imaging" of SkolTech.

OCIS codes: 120.0120, 160.1190, 160.4330

References:

1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
2. M. L. Gorodetskii, Optical Microresonators with Giant Quality Factors (Fizmatlit, Moscow, 2011).
3. J. M. Maia, V. A. Amorim, D. Viveiros, and P. V. S. Marques, “Femtosecond laser micromachining of an optofluidics-based monolithic whispering-gallery mode resonator coupled to a suspended waveguide,” Sci. Rep. 11, 9128 (2021).
4. K. N. Min’kov, G. V. Likhachev, N. G. Pavlov, A. N. Danilin, A. E. Shitikov, A. I. Yurin, E. A. Lonshakov, F. V. Bulygin, V. E. Lobanov, and I. A. Bilenko, “Manufacturing of high-quality crystalline whispering gallery mode microresonators using single point diamond turning,” J. Opt. Technol. 88(6), 348–353 (2021) [Opt. Zh. 88(6), 84–92 (2021)].
5. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, N. Yu, and L. Maleki, “Fabrication, characterization and applications of crystalline whispering gallery mode resonators,” in 9th International Conference on Transparent Optical Networks (2007), pp. 50–54.
6. A. S. Artemov, “Chemicomechanical polishing of material,” Nano-technol. Russ. 6, 419 (2011) [Ross. Nanotekhnol. 6(7–8) 54–73 (2011)].
7. A. I. Stognij, N. N. Novitskii, and O. M. Stukalov, “Nanoscale ion beam polishing of optical materials,” Tech. Phys. Lett. 28, 17–20 (2002) [Pis’ma Zh. Tekh. Fiz. 28(1), 39–48 (2002)].
8. V. A. Gorshkov, A. S. Nevrov, and A. N. Kudelin, “Method for magnetorheological treatment of surfaces of optical components using small tools,” Russian patent 2592337 (2014).
9. V. P. Veiko, A. A. Petrov, and A. A. Samokhvalov, Introduction to Laser Technologies (ITMO University, St. Petersburg, 2018).

10. A. Krishnan and F. Fang, “Review on mechanism and process of surface polishing using lasers,” Front. Mech. Eng. 14(3), 299–319 (2019).
11. A. E. Shitikov, R. R. Galiev, N. M. Kondratiev, V. E. Lobanov, K. N. Min’kov, A. B. Matsko, and I. A. Bilenko, “Optimization of the self-injection locking and resonator characterisation in this regime,” Proc. SPIE 11672, 116720G (2021).
12. I. L. Knunyants, Chemical Encyclopedia (Sovetskaya Entsyklopediya, Moscow, 1990).
13. A. E. Shitikov, I. A. Bilenko, N. M. Kondratiev, V. E. Lobanov, A. Markosyan, and M. L. Gorodetsky, “Billion Q-factor in silicon WGM resonators,” Optica 5(12), 1525–1528 (2018).
14. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007).
15. I. S. Grudinin and N. Yu, “Dispersion engineering of crystalline resonators via microstructuring,” Optica 2(3), 221–224 (2015).