ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-06-15-24

УДК: 551.501.816, 551.510.411

Calibration and field test of mobile lidar for remote sensing of atmospheric methane

For Russian citation (Opticheskii Zhurnal):

Садовников С.А., Романовский О.А., Яковлев С.В., Харченко О.В., Кравцова Н.С. Калибровка и полевые испытания мобильного лидара для дистанционного зондирования метана в атмосфере // Оптический журнал. 2022. Т.89. № 6. С. 15–24. http://doi.org/10.17586/1023-5086-2022-89-06-15-24

 

Sadovnikov S.A., Romanovskii O.A., Yakovlev S.V., Kharchenko O.V., Kravtsova N.S. Calibration and field test of mobile lidar for remote sensing of atmospheric methane  [in Russian] // Opticheskii Zhurnal. 2022. V.89. № 6. P. 15–24. http://doi.org/10.17586/1023-5086-2022-89-06-15-24 

For citation (Journal of Optical Technology):

S. A. Sadovnikov, O. A. Romanovskii, S. V. Yakovlev, O. V. Kharchenko, and N. S. Kravtsova, "Calibration and field test of mobile lidar for remote sensing of atmospheric methane," Journal of Optical Technology. 89(6), 320-326 (2022). https://doi.org/10.1364/JOT.89.000326

Abstract:

Subject of study. Methane concentration in near-the-surface tropospheric sensing paths was investigated under background conditions using a mobile differential absorption lidar. Aim of study. A mobile differential absorption lidar for remote sensing of atmospheric methane in the mid-infrared spectral range was designed, calibrated, and tested in natural field experiments. Method. The designed lidar enables investigation in the atmosphere using the differential absorption method. This method is based on the effect of resonant absorption of laser emission by gases. The emission source of the lidar has two operating wavelengths, one (on-line) in the center of the methane absorption line and the other (off-line) on the wing of the absorption line. The lidar signals obtained at on- and off-line wavelengths enable retrieval of the methane concentration under background conditions. Main results. The designed mobile IR differential absorption lidar for investigation of atmospheric methane is described. The mobile IR emission source of the differential absorption lidar was calibrated in the informative range of methane sensing near 3400 nm. The results of a natural field test of the mobile IR lidar for detection of atmospheric response at the calibrated sensing wavelengths and retrieval of methane background concentrations of approximately 2.0 ppm in horizontal surface atmospheric sensing paths are presented. Practical significance. The technical solutions for the design of the mobile lidar for remote methane sensing proposed in this paper enable formulation of the requirements on its further improvement aiming to increase the measurement range, design a vertical configuration for remote sensing from an aircraft, and use it at arctic latitudes.

Keywords:

Lidar, IR range, differential absorption, atmosphere, methane

Acknowledgements:

Test field measurements of methane concentration were made within the state assignment of the Institute of Atmospheric optics of RAS, Siberian branch. Calibration of the lidar radiating source was supported by RFBR and Tomsk region within the scientific project No. 19-45-700003.

OCIS codes: 010.0280, 010.1280, 010.3640

References:

1. S. M. Bobrovnikov, G. G. Matvienko, O. A. Romanovskii, I. B. Serikov, and A. Ya. Sukhanov, Lidar Spectroscopic Gas Analysis of the Atmosphere (Izdatel’stvo IOA SO RAN, Tomsk, 2014).
2. R. T. H. Collis and P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer, New York, 1976), pp. 71–151.
3. B. I. Vasil’ev and O. Mannoun, “IR differential-absorption lidars for ecological monitoring of the environment,” Quantum Electron. 36(9), 801–820 (2006).

4. Yu. S. Balin, A. G. Borovoi, V. D. Burlakov, S. I. Dolgii, M. G. Klemasheva, A. V. Konoshonkin, G. P. Kokhanenko, N. V. Kustova, V. N. Marichev, G. G. Matvienko, A. A. Nevzorov, A. V. Nevzorov, I. E. Penner, O. A. Romanovskii, S. V. Samoilova, A. Ya. Sukhanov, O. V. Kharchenko, and V. A. Shishko, Lidar Monitoring of Cloud and Aerosol Fields, Small Gas Components, and Meteorological Parameters of the Atmosphere, G. G. Matvienko, ed. (Izdatel’stvo IOA SO RAN, Tomsk, 2015).
5. J. Li, Z. Yu, Z. Du, Y. Ji, and C. Liu, “Standoff chemical detection using laser absorption spectroscopy: a review,” Remote Sens. 12(17), 2771 (2020).
6. V. Mitev, S. Babichenko, J. Bennes, R. Borelli, A. Dolfi-Bouteyre, L. Fiorani, L. Hespel, T. Huet, A. Palucci, M. Pistilli, A. Puiu, O. Rebane, and I. Sobolev, “Mid-IR DIAL for high-resolution mapping of explosive precursors,” Proc. SPIE 8894, 88940S (2013).
7. E. Cadiou, D. Mammez, J.-B. Dherbecourt, G. Gorju, J. Pelon, J.-M. Melkonian, A. Godard, and M. Raybaut, “Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source,” Opt. Lett. 42(20), 4044–4047 (2017).
8. Y. Shibata, C. Nagasawa, and M. Abo, “Development of 1.6 μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles,” Appl. Opt. 56(4), 1194–1201 (2017).
9. J. Barrientos-Barria, J.-B. Dherbecourt, M. Raybaut, A. Godard, J. M. Melkonian, M. Lefebvre, B. Faure, and G. Souhaité, “3.3–3.7 μm nested cavity OPO pumped by an amplified micro-laser for portable DIAL,” in Conference on Lasers and Electro-Optics–International Quantum Electronics Conference (2013), paper CD_5_4.
10. D. Mammez, E. Cadiou, J.-P. Dherbecourt, M. Raybaut, J.-M. Melkonian, A. Godard, G. Gorju, J. Pelon, and M. Lefebvre, “Multispecies transmitter for DIAL sensing of atmospheric water vapour, methane and carbon dioxide in the 2 μm region,” Proc. SPIE 9645, 964507 (2015).
11. V. S. Ayrapetyan, “Measurement of absorption spectra for atmospheric methane by a lidar system with tunable emission wavelength in the range 1.41–4.24 μm,” J. Appl. Spectrosc. 76(2), 268–272 (2009).
12. V. S. Ayrapetyan and P. A. Fomin, “Laser detection of explosives based on differential absorption and scattering,” Opt. Laser Technol. 106, 202–208 (2018).
13. O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Development of near/mid IR differential absorption OPO lidar system for sensing of atmospheric gases,” Opt. Laser Technol. 116, 43–47 (2019).
14. S. Veerabuthiran, A. K. Razdan, M. K. Jindal, R. K. Sharma, and V. Sagar, “Development of 3.0–3.45 nm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane,” Opt. Laser Technol. 73, 1–5 (2015).
15. M. K. Jindal, S. Veerabuthiran, Mainuddin, and A. K. Razdan, “Integrated path DIAL for standoff detection of acetone vapors under topographic target condition,” Opt. Laser Technol. 143, 107299 (2021).
16. Y. Gong, L. Bu, B. Yang, and F. Mustafa, “High repetition rate mid-infrared differential absorption lidar for atmospheric pollution detection,” Sensors 20(8), 2211 (2020).
17. I. Robinson, J. W. Jack, C. F. Rae, and J. B. Moncrieff, “Development of a laser for differential absorption lidar measurement of atmospheric carbon dioxide,” Proc. SPIE 9246, 92460U (2014).
18. M. Dawsey, K. Numata, S. Wu, and H. Riris, “Optical parametric technology for methane measurements,” Proc. SPIE 9612, 961205 (2015).
19. R. Foltynowicz, “High-energy, broadband, rapid tuning frequency converter,” US patent 8837538 (2014).
20. J. L. Lippert, S. V. Stearns, D. E. Brake, and C. M. Fisher, “Gas flux determination using airborne DIAL LIDAR and airborne wind measurement,” US patent 8121798 (2012).
21. J. Liu, “Method and apparatus for wavelength locking free optical frequency comb based differential absorption lidar,” US patent 8541744 (2013).
22. M. DeAntonio and R. Motto, “Variable-wavelength lidar system,” US patent application 14/101,143 (2013).
23. A. Yerasi, W. D. Tandy, W. J. Emery, and R. A. Barton-Grimley, “Comparing the theoretical performances of 1.65- and 3.3-μm differential absorption lidar systems used for airborne remote sensing of natural gas leaks,” J. Appl. Remote Sens. 12(2), 029901 (2018).
24. J. Bartholomew, P. Lyman, C. Weimer, and W. Tandy, “Wide area methane emissions mapping with airborne IPDA lidar,” Proc. SPIE 10406, 1040607 (2017).
25. M. B. Frish, R. T. Wainner, M. C. Laderer, M. G. Allen, J. Rutherford, P. Wehnert, S. Dey, J. Gilchrist, R. Corbi, D. Picciaia, P. Andreussi, and D. Furry, “Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting,” Proc. SPIE 8726, 87260C (2013).
26. V. I. Grigorievsky, V. P. Sadovnikov, and A. V. Elbakidze, “Measurements of the background methane concentration with a remote lidar on kilometer routes in the Moscow region,” Zh. Radioelektron. (9) (2021).
27. A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Budenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
28. E. V. Degtiarev, A. R. Geiger, and R. D. Richmond, “Compact mid-infrared DIAL lidar for ground-based and airborne pipeline monitoring,” Proc. SPIE 4882, 432–441 (2003).
29. D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2(1), 023518 (2008).
30. S. V. Yakovlev, S. A. Sadovnikov, O. V. Kharchenko, and N. S. Kravtsova, “Remote sensing of atmospheric methane with IR OPO lidar system,” Atmosphere 11(1), 70 (2020).
31. L. Meng, A. Fix, M. Wirth, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26(4), 3850–3860 (2018).
32. G. A. Wagner and D. F. Plusquellic, “Ground-based, integrated path differential absorption LIDAR measurement of CO2 , CH4 , and H2O near 1.6 μm,” Appl. Opt. 55(23), 6292–6310 (2016).
33. O. Kara, F. Sweeney, M. Rutkauskas, C. Farrell, C. G. Leburn, and D. T. Reid, “Open-path multi-species remote sensing with a broadband optical parametric oscillator,” Opt. Express 27(15), 21358–21366 (2019).
34. F. Innocenti, R. Robinson, T. Gardiner, A. Finlayson, and A. Connor, “Differential absorption lidar (DIAL) measurements of landfill methane emissions,” Remote Sens. 9(9), 953 (2017).
35. “Emission monitoring using Differential Absorption Lidar (DIAL),” https://www.npl.co.uk/products-services/environmental/absorption-lidar-dial.
36. O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Remote analysis of methane content in the atmosphere by an IR DIAL lidar system in the 3300–3430-nm spectral range,” Opt. Atmos. Okeana 32(11), 896–901 (2019).
37. G. G. Matvienko, O. A. Romanovski˘ı, S. A. Sadovnikov, A. Ya. Sukhanov, O. V. Kharchenko, and S. V. Yakovlev, “Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere,” J. Opt. Technol. 84(6), 408–414 (2017) [Opt. Zh. 84(6), 58–65 (2017)].
38. O. A. Romanovskii, S. A. Sadovnikov, S. V. Yakovlev, A. I. Nadeev, N. G. Zaitsev, A. A. Nevzorov, A. V. Nevzorov, E. V. Gordeev, O. V. Kharchenko, N. S. Kravtsova, and D. A. Tuzhilkin, “Mobile compact IR differential absorption lidar for research of methane in the atmosphere,” Proc. SPIE 11560, 115602S (2020).
39. “SOLAR Laser Systems,” https://solarlaser.com.
40. S. N. Mikhailenko, Yu. L. Babikov, and V. F. Golovko, “Information-calculating system ‘Spectroscopy of atmospheric gases’: structure and main functions,” Opt. Atmos. Okeana 18(9), 685–695 (2005).