ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-11-90-101

УДК: 535-1

Investigation of the structure of plastic products made by 3D printing in sub-terahertz radiation

For Russian citation (Opticheskii Zhurnal):

Хасанов И.Ш., Благова Т.В. Исследование структуры пластиковых изделий, изготовленных методом 3D печати, в субтерагерцовом излучении // Оптический журнал. 2023. Т. 90. № 11. С. 90–101. http://doi.org/10.17586/1023-5086-2023-90-11-90-101

 

Khasanov I.Sh., Blagova T.V. Investigation of the structure of plastic products made by 3D printing in sub-terahertz radiation [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 90–101. http://doi.org/10.17586/1023-5086-2023-90-11-90-101

For citation (Journal of Optical Technology):

I. Sh. Khasanov and T. V. Blagova, "Investigation of the structure of plastic products made by 3D printing in sub-terahertz radiation," Journal of Optical Technology. 90 (11), 691-698 (2024).  https://doi.org/10.1364/JOT.90.000691

Abstract:

Subject of study. Investigation of the structure of plastic products made using fused deposition modeling in the sub-terahertz range, with varying parameters of 3D printing, such as the pattern and the infill density. Aim of study. Establishing the influence of 3D printing parameters (such as template and fill percentage) on the optical characteristics of 3D printed plastic products to identify the possibilities of subterahertz imaging in the study and non-destructive testing of plastic products and determine the need to take these parameters into account when creating terahertz optics elements. Method. Sub-terahertz imaging using a 300 GHz compact source radiation and a terahertz camera. Image resolution was improved by subpixel scanning. Main results. An overview of the applications of fused deposition modeling 3D printing in creating terahertz optics elements is provided. It is noted that many studies don't provide comprehensive details on the printing parameters used. Images of plastic objects, printed under various 3D printing parameters, were captured. Differences in image characteristics were identified, showcasing the impact of the internal sub-wavelength structure on the optical properties of the products. Results indicate the potential to determine the infill density and type of filling pattern in plastic products. Practical significance. Sub-terahertz imaging, with radiation from compact sources paired with terahertz cameras, offers a promising and competitive alternative for nondestructive testing of 3D printed plastic items. The necessity for a detailed description of 3D printing parameters, to ensure reproducibility in scientific research, especially when designing optical elements for terahertz and sub-terahertz ranges, is emphasized.

Keywords:

terahertz radiation, non-destructive testing, 3D printing, fused deposition modeling method, fused deposition modeling

Acknowledgements:
the work was carried out within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation (subject FFNS-2022-0009). The results of the work were obtained using the equipment of the Center for Collective Use of the Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences

OCIS codes: 110.6795, 050.6875, 120.4290

References:
  1. Gibson I., Rosen D., Stucker B., et al. Additive manufacturing technologies. 3rd ed. Cham: Springer International Publ., 2021. 675 p. 2021. https://doi.org/10.1007/978-3-030-56127-7
  2. Pearce J., Blair C.M., Laciak K., et al. 3-D printing of open source appropriate technologies for self-directed sustainable development // J. Sustainable Development. 2010. V. 3. № 4. P. 17. https://doi.org/10.5539/jsd.v3n4p17
  3. Berglund G., Wisniowiecki A., Gawedzinski J., et al. Additive manufacturing for the development of optical/photonic systems and components // Optica. 2022. V. 9. № 6. P. 623–638. https://doi.org/10.1364/OPTICA.451642
  4. Kranert F., Budde J., Hinkelmann M., et al. Additively manufactured polymer optomechanics and their application in laser systems // Generative Manufacturing of Optical, Thermal and Structural Components (GROTESK) / Ed. by Lachmayer R. et al. Cham: Springer International Publ., 2022. P. 25–50.
  5. Sun J., Hu F. Three-dimensional printing technologies for terahertz applications: A review // Internat. J. RF and Microwave Computer-Aided Eng. 2020. V. 30. № 1. P. e21983. https://doi.org/10.1002/mmce.21983
  6. Jeong H.Y., Lee E., An S.-C., et al. 3D and 4D printing for optics and metaphotonics // Nanophoton. 2020. V. 9. № 5. P. 1139–1160. https://doi.org/10.1515/nanoph-2019-0483
  7. Headland D., Withayachumnankul W., Webb M., et al. Analysis of 3D printed metal for rapid-prototyped reflective terahertz optics // Opt. Exp. 2016. V. 24. № 15. P. 17384–17396. https://doi.org/10.1364/OE.24.017384
  8. Squires A.D., Constable E., Lewis R.A. 3D printed terahertz diffraction gratings and lenses // J. Infrared, Millimeter, and Terahertz Waves. 2015. V. 36. № 1. P. 72–80. https://doi.org/10.1007/s10762-014-0122-8
  9. Tomassoni C., Peverini O.A., Venanzoni G., et al. 3D printing of microwave and millimeter-wave filters: additive manufacturing technologies applied in the development of high-performance filters with novel topologies // IEEE Microwave Magazine. 2020. V. 21. № 6. P. 24–45. https://doi.org/10.1109/MMM.2020.2979153
  10. Faraji Rad Z., Prewett P.D., Davies G.J. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays: 1 // Microsys. & Nanoeng. 2021. V. 7. № 1. P. 1–17. https://doi.org/10.1038/s41378-021-00298-3
  11. Crump S.S. Apparatus and method for creating three-dimensional objects: pat. US5121329A USA. 1992.
  12. Kaur A., Myers J.C., Ghazali M.I.M., et al. Affordable terahertz components using 3D printing // 2015 IEEE 65th Electronic Components and Tech. Conf. (ECTC). San Diego, CA, USA. May 26–29, 2015. P. 2071–2076. https://doi.org/ 10.1109/ECTC.2015.7159888
  13. Busch S.F., Weidenbach M., Fey M., et al. Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics // J. Infrared, Millimeter, and Terahertz Waves. 2014. V. 35. № 12. P. 993–997. https://doi.org/10.1007/s10762-014-0113-9
  14. Busch S.F., Weidenbach M., Balzer J.C., et al. THz optics 3D printed with TOPAS // J. Infrared, Millimeter, and Terahertz Waves. 2016. V. 37. № 4. P. 303–307. https://doi.org/10.1007/s10762-015-0236-7
  15. Revuri P.K., Walus K., Wallace V.P., et al. 3D printed Fabry–Pérot filters for terahertz spectral range // J. Infrared, Millimeter, and Terahertz Waves. 2022. V. 43. № 11. P. 942–956. https://doi.org/10.1007/s10762-022-00887-x.
  16. Cruz A.L.S., Argyros A., Tang X., et al. 3D printed terahertz Bragg fiber // 2015 40th Internat. Conf. on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Hong Kong, China. August 23–28, 2015. P. 1–2. https://doi.org/ 10.1109/IRMMW-THz.2015.7327936
  17. Hernandez-Serrano A.I., Sun Q., Bishop E.G., et al. Design and fabrication of 3-D printed conductive polymer structures for THz polarization control // Opt. Exp. 2019. V. 27. № 8. P. 11635–11641. https://doi.org/10.1364/OE.27.011635
  18. Weidenbach M., Jahn D., Rehn A., et al. 3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz // Opt. Exp. 2016. V. 24. № 25. P. 28968–28976. https://doi.org/10.1364/OE.24.028968
  19. van Putten L.D., Gorecki J., Fokoua E.N., et al. 3D printed polymer antiresonant waveguides for short-reach terahertz applications // Appl. Opt. 2018. V. 57. № 14. P. 3953–3958. https://doi.org/10.1364/AO.57.003953
  20. Rohrbach D., Kang B.J., Feurer T. 3D printed THz wave- and phaseplates // Opt. Exp. 2021. V. 29. № 17. P. 27160–27170. https://doi.org/10.1364/OE.433881
  21. Dorozhkin K.V., Teterina D.D., Badin A.V., et al. ABS and PLA sub-terahertz absorbers for 3D printing technology // J. Phys.: Conf. Ser. 2020. V. 1499. № 1. P. 012008. https://doi.org/10.1088/1742-6596/1499/1/012008
  22. Squires A.D., Lewis R.A. Feasibility and characterization of common and exotic filaments for use in 3D printed terahertz devices // J. Infrared Milli Terahz Waves. 2018. V. 39. № 7. P. 614–635. https://doi.org/10.1007/s10762-018-0498-y
  23. Clark A.T., Federici J.F., Gatley I. Effect of 3D printing parameters on the refractive index, attenuation coefficient, and birefringence of plastics in terahertz range // Adv. in Mat. Sci. and Eng. 2021. V. 2021. P. e8276378. https://doi.org/10.1155/2021/8276378
  24. Brodie C.H., Spotts I., Reguigui H., et al. Comprehensive study of 3D printing materials over the terahertz regime: absorption coefficient and refractive index characterizations // Opt. Mat. Exp. 2022. V. 12. № 9. P. 3379–3402. https://doi.org/10.1364/OME.465820
  25. Siemion A. The magic of optics — An overview of recent advanced terahertz diffractive optical elements // Sensors. 2021. V. 21. № 1. P. 100. https://doi.org/10.3390/s21010100
  26. Yakovlev E.V., Zaytsev K.I., Dolganova I.N., et al. Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy // IEEE Transact. on Terahertz Sci. and Tech. 2015. V. 5. № 5. P. 810–816. https://doi.org/10.1109/TTHZ.2015.2460671
  27. Stoik C.D., Bohn M.J., Blackshire J.L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy // Opt. Exp. 2008. V. 16. № 21. P. 17039–17051. https://doi.org/ 10.1364/OE.16.017039
  28. Lopato P., Chady T. Terahertz detection and identification of defects in layered polymer composites and composite coatings // Nondestructive Testing and Evaluation. 2013. V. 28. № 1. P. 28–43. https://doi.org/ 10.1080/10589759.2012.694882
  29. Ahi K., Shahbazmohamadi S., Asadizanjani N. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging // Opt. and Lasers in Eng. 2018. V. 104. P. 274–284. https://doi.org/ 10.1016/j.optlaseng.2017.07.007
  30. Veselý P., Tichý T., Šefl O., et al. Evaluation of dielectric properties of 3D printed objects based on printing resolution // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 461. № 1. P. 012091. https://doi.org/10.1088/1757-899X/461/1/012091
  31. Cantrell J., Rohde S., Damiani D., et al. Experimental characterization of the mechanical properties of 3D printed ABS and polycarbonate parts // Advancement of Optical Methods in Experimental Mechanics. V. 3 / Ed. by. Yoshida S., Lamberti L., Sciammarella C. Cham: Springer International Publ., 2017. P. 89–105. https://doi.org/ 10.1007/978-3-319-41600-7_11
  32. Sun X., Mazur M., Cheng C.-T. A review of void reduction strategies in material extrusion-based additive manufacturing // Additive Manufact. 2023. V. 67. P. 103463. https://doi.org/10.1016/j.addma.2023.103463
  33. Missori M., Pilozzi L., Conti C. Terahertz waves dynamic diffusion in 3D printed structures // Sci. Rep. 2022. V. 12. № 1. P. 8613. https://doi.org/10.1038/s41598-022-12617-3
  34. Naftaly M., Savvides G., Alshareef F., et al. Non-destructive porosity measurements of 3D printed polymer by terahertz time-domain spectroscopy // Appl. Sci. 2022. V. 12. № 2. P. 927. https://doi.org/10.3390/app12020927
  35. Naftaly M., Tikhomirov I., Hou P., et al. Measuring open porosity of porous materials using THz-TDS and an index-matching medium // Sensors. 2020. V. 20. № 11. P. 3120. https://doi.org/10.3390/s20113120
  36. Hassen A.A., Kirka M.M. Additive manufacturing: the rise of a technology and the need for quality control and inspection techniques // Mat. Eval. 2018. V. 76. № 4. https://www.osti.gov/servlets/purl/1437906
  37. Бердюгин А.И., Бадьин А.В., Гурский Р.П. и др. Терагерцовый сканирующий рефлектометр для визуализации строения полимерных конструкций в аддитивном производстве // Ural Radio Eng. J. 2021. Т. 5, № 3, C. 207–224. https://doi.org/10.15826/urej.2021.5.3.001

Berdyugin A.I., Badin A.V., Gursky R.P., et al. Terahertz scanning reflectometer for structure visualization of polymer constructions in additive manufacturing [in Russian] // Ural Radio Eng. J. 2021. V. 5. P. 207–224. https://doi.org/10.15826/urej.2021.5.3.001

  1. Sathishkumar N., Udayakumar A.S.M., Vincent B., et al. Study and analysis of 3D printed FDM components by non-destructive testing techniques // Internat. J. Research and Review. 2020. № 5. P. 218–222. https://doi.org/ 10.4444/ijrr.1002/1974
  2. Lu Q.Y., Wong C.H. Applications of non-destructive testing techniques for post-process control of additively manufactured parts // Virtual and Physical Prototyping. 2017. V. 12. № 4. P. 301–321. https://doi.org/10.1080/17452759.2017.1357319
  3. Rajkumar C., Hemakumar V.S., Jayavelu S., et al. Non-destructive testing (NDT) analysis in fused deposition modeling — A review // AIP Conf. Proc. 5th Internat. Conf. on Innovative Design, Analysis & Development Practices in Aerospace & Automotive Engineering (I-Dad’22). Chennai, India. February 24, 2022. P. 020004. https://doi.org/ doi.org/10.1063/5.0139323
  4. Электронный ресурс URL: https://terasense.com/ (TeraSense / Терагерцовое оборудование для получения ТГц изображений)

Electronic resource URL: https://terasense.com/ (TeraSense / Terahertz equipment for THz imaging)

  1. Besson A., Minasyan A. Terahertz imaging for composite non destructive testing // 15th Asia Pacific Conf. for Non-Destructive Testing (APCNDT2017). Singapore. November 13–17, 2017. P. 1–6.
  2. Jin Y., Walker E., Heo H., et al. Nondestructive ultrasonic evaluation of fused deposition modeling based additively manufactured 3D printed structures // Smart Mater. Struct. IOP Publ. 2020. V. 29. № 4. P. 045020. https://doi.org/10.1088/1361-665X/ab74b9
  3. Chaschina O.I., Knyazev B.A., Kulipanov G.N., et al. Real-time speckle metrology using terahertz free electron laser radiation // Nuclear Instruments and Methods in Phys. Research Section A: Accel., Spectrometers, Detectors and Associated Equipment. 2009. V. 603. № 1–2. P. 50–51. https://doi.org/10.1016/j.nima.2008.12.235
  4. Khasanov I.S., Zykova L.A., Nikitin A.K., et al. Terahertz surface plasmon resonance microscopy based on ghost imaging with pseudo-thermal speckle light // 2020 45th Internat. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Buffalo, N.Y., USA. November 08–13, 2020. P. 1–2. https://doi.org/ 10.1109/IRMMW-THz46771.2020.9370795
  5. Blagova T.V., Khasanov I.S. Contribution of wave aberrations represented by Zernike polynomials to the cross-correlation function between distorted and actual speckle patterns // J. Phys.: Conf. Ser. 2021. V. 2091. № 1. P. 012009. https://doi.org/10.1088/1742-6596/2091/1/012009
  6. Tsai R.Y., Huang T.S. Multiframe image restoration and registration // Multiframe Image Restoration and Registration. 1984. V. 1. P. 317–339.
  7. Jintamethasawat R., Thanapirom C., Rattanawan P., et al. Non-uniformity correction algorithm for THz array detectors in high-resolution imaging applications // J. Infrared, Millimeter, and Terahertz Waves. 2020. V. 41. № 8. P. 940–956. https://doi.org/10.1007/s10762-020-00698-y
  8. Электронный ресурс URL: https://github.com/KhasanovISh/Public (Публичный репозиторий исходного кода Хасанова И.Ш. на Github).

Electronic resource URL: https://github.com/KhasanovISh/Public (Khasanov I.Sh. Github Public source code repository).