DOI: 10.17586/1023-5086-2023-90-12-111-117
УДК: 53.097
Suppression of residual amplitude modulation in Ti:LiNbO3 integrated optical waveguides by changing its topology
Full text on elibrary.ru
Publication in Journal of Optical Technology
Шулепов В.А., Смирнова А.В., Вдовкин М.Е., Ильичев И.В., Стригалев В.Е. Подавление паразитной амплитудной модуляции в титан-диффузных волноводах на кристалле ниобата лития путём модификации их топологии // Оптический журнал. 2023. Т. 90. № 12. С. 111–117. http://doi.org/10.17586/1023-5086-2023-90-12-111-117
Shulepov V.A., Smirnova A.V., Vdovkin M.E., Ilichev I.V., Strigalev V.E. Suppression of residual amplitude modulation in Ti:LiNbO3 integrated optical waveguides by changing its topology [ In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 12. P. 111–117. http://doi.org/10.17586/1023-5086-2023-90-12-111-117
Subject of study. Residual amplitude modulation in Ti:LiNbO3 integrated optical waveguides. Aim of study. Suppression of residual amplitude modulation in Ti:LiNbO3 integrated optical waveguides by modified topology. Method. The waveguides topology modification consists in formation of a bend in the input and output sections, due to which angles are formed between the direction of radiation in the region of the phase modulator and in the region of the input and output ports, 3.47° and 1.43° respectively. Such angles do not exceed the optical radiation divergence angle, determined by the optical fiber numerical aperture. However, the optical radiation transmission possibility from the input fiber to any of the output fibers through the integrated optical circuit substrate, bypassing the optical waveguides, should be reduced. Main results. It has been found that the density of the residual amplitude modulation values in the boxplot increases during the formation of the waveguide bending at the input and output sections of the integrated optical circuit. Thus, the interquartile range of the residual amplitude modulation values almost halved from 0.077% to 0.043%, and the difference between the maximum and the minimum values almost halved from 0.161% to 0.095%. Practical significance. The obtained results can be used to improve the characteristics of fiber-optic gyroscopes and other devices that have a multifunctional integrated optical circuit based on Ti:LiNbO3 in the optical scheme.
fiber optic gyroscope, integrated optical circuit, residual amplitude modulation, fiber optic sensor system, interferometric fiber optic sensor
Acknowledgements:the work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation, State assignment No. 2019-0923.
OCIS codes: 250.3140, 250.4110, 250.4390, 130.3730, 130.4110
References:- Sanders G., Sanders S., Strandjord L. Fiber optic gyro development at Honeywell // Proc. SPIE. 2016. V. 9852. № 5. https://doi.org/10.1117/12.2228893
- Pavlath G.A. Fiber optic gyros past, present and future // International Conference on Optical Fiber Sensors. Beijing, China. 14–19 October 2012. V. 8421. https://doi.org/10.1117/12.966855
- Lefevre H., Steib A., Claire A. The fiber optic gyro 'adventure' at Photonetics, iXsea and now iXblue // Proc. SPIE. 2020. V. 11405. № 5. https://doi.org/10.1117/12.2560791
- Zhang C., Liu J., Zhang Z., Zheng Y., Xu X., Song J. Analysis of the influence of residual intensity modulation in the multifunction integrated optic circuit on fiber-optic gyroscopes performance // Ieee Sensors Journal. 2021. V. 21. № 21. (ноябрь). P. 23903–23910. https://doi.org/10.1109/jsen.2021.3117656
- Wooten E.L., Kissa K.M., Yi-Yan A., Murphy E.J., Lafaw D.A. A review of lithium niobate modulators for fiber-optic communications systems // IEEE J. Sel. Topics Quantum Electron. 2000. V. 6. № 1. P. 69–82. https://doi.org/10.1109/ 10.1109/2944.826874
- Wang D., Sheng F. Residuary intensity modulation of the phase modulator in IFOG and its measurement // Opto-Electronic Engineering. 2007. V. 34 P. 26–29.
- Ishibashi C., Ye J., Hall J.L. Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM // Quantum Electronics and Laser science Conference, Long Beach, California United States. 19–22 May 2002. P. 91–92. https://doi.org/10.1109/QELS.2002.1031144
- Sanders S.J., Lewis J.E., Mosor S. et al. Systems and methods for environmentally insensitive High-Performance Fiber-Optic Gyroscopes // Patent US2013044328. 21.02.2013.
- Liu J., Zhang C., Zheng Y., Song J., Gao F., Yang D. Suppression of nonlinear residual intensity modulation in multifunction integrated optic circuit for fiber-optic gyroscopes // Journal of Lightwave Technology. 2020. V. 6. P. 1572–1579. https://doi.org/ 10.1109/JLT.2020.2968478
- Gampp L., Zimmerman G., Martinez A. et al. Integrated optics chip having reduced surface wave propagation // US Patent 6,438,280 B1, 2000.
- Zhang Z., Felipe D., Brinker W., Kleinert M., Maese-Novo A. C/L-band colorless ONU based on polymer bidirectional optical subassembly // Journal of Lightwave Technology. 2015. V. 33. № 6. P. 1230–1234. https://doi.org/ 10.1109/JLT.2014.2377092
- Gao Z., Krombholz B., Dieckröger J. et al. Planar optical circuit // US Patent 7,373,030 B2. 2003.
- Karavaev P., Ilichev I., Agruzov P., Tronev A., Schamrai A. Separation of polarization in titanium-diffuse waveguides on lithium niobate substrates // Letters to JTP. 2016. V. 42. P. 33–39. https://doi.org/10.1134/S1063785016050266
- Kincaid B.E. Coupling of polarization-maintaining optical fibers to Ti:LiNbO3 waveguides with angled interfaces // Optics Letters. 1988. V. 13. № 5. P. 425–427. https://doi.org/10.1364/ol.13.000425
- Lefevre H.C. The fiber-optic gyroscope. 3rd ed. London: Artech House Applied Photonics Series, 2022. 439 p.
- Ilichev I., Toguzov N., Schamrai A. Plasmon-polariton polarizer on the surface of single-mode channel waveguides in lithium niobate // Letters to JTP. 2009. V. 35. P. 97–103.
- Parphenov M., Tronev A., Ilichev I., Agruzov P., Schamrai A. Redistribution of optical power in the arms of a waveguide Y-splitter under local external illumination of a lithium niobate substrate // Letters to JTP. 2020. V. 46. P. 8–11. https://doi.org/10.21883/PJTF.2020.01.48855.18040
- Electronic resource URL: https://www.ixblue.com/wp-content/uploads/2022/01/tn-ram-effect-and-mitigation-technic.pdf (iXblue Photonics & Space / Residual Amplitude Modulation of optical phase modulator).