ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-12-14-23

УДК: 621.373.826

Compact powerful subnanosecond microchip laser based on Nd:YAG/Cr:YAG crystal operating without thermal stabilization system

For Russian citation (Opticheskii Zhurnal):
Яковин М.Д., Яковин Д.В., Грибанов А.В. Компактный мощный субнаносекундный микрочип-лазер на кристалле Nd:YAG/Cr:YAG, работающий без системы термостабилизации // Оптический журнал. 2023. Т. 90. № 12. С. 14–23. http://doi.org/10.17586/1023-5086-2023-90-12-14-23

 

Yakovin M.D., Yakovin D.V., Gribanov A.V. Compact powerful subnanosecond microchip laser based on Nd:YAG/Cr:YAG crystal operating without thermal stabilization system [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 12. P. 14–23. http://doi.org/10.17586/1023-5086-2023-90-12-14-23

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Laboratory model of a small-sized microchip laser system, which includes an emitter based on an Nd:YAG/Cr:YAG active crystal with passive Q-switching, a pumping system — a multiwave laser diode array consisting of 5 laser diode bars, a lens system for collimation and focusing pump radiation, as well as a power source for laser diodes. The aim of the work is to develop and research a compact, portable microchip laser with high peak power and energy per pulse operating over a wide temperature range. Method. Due to the use of a multiwavelength laser diode array as a pump source, the laser does not require complex thermal stabilization circuits. The fast axis collimation system developed for all laser diode lines ensures efficient and stable performance. Main results. The possibility of using the array of multiwavelength laser diodes as a pump source for the passive Q-switched microchip Nd:YAG laser based on a saturable Cr:YAG absorber is demonstrated. This pumping allows to avoid using thermal stabilization system under typical environmental conditions. The small-sized microchip laser system (the volume is 1 dm3 together with the power supply of pump laser diodes) has been created. At a pulse repetition rate of the laser diode pump array of 20 Hz and a duration of 300 µs, the average output power of the laser is 203 mW at a wavelength of 1064 nm. The energy in the generation pulse is more than 10 mJ, which corresponds to a peak power of 50 MW. The radiation divergence is 3.5 mrad, the beam diameter at a distance of 500 mm from the resonator is about 2 mm. The stability of the average output power of the laser system is better than 3% in the ambient temperature range from 16 to 30 °С without the use of the thermal stabilization system. Practical significance. The compact source of the powerful short pulses has been developed; it can operate over a wide temperature range without the thermal stabilization system, which makes it an ideal choice for portable systems and devices. It can find application in various fields, such as optical location and rangefinding, atmospheric probing, spectroscopy, material processing and non-linear optics.

Keywords:

microchip laser, Nd:YAG laser, passive Q-switching, Cr:YAG, diode pumping, alignment

Acknowledgements:
the authors express their gratitude to Alexey Redyuk (NSU) and Sergey Mikerin (IAiE SB RAS) for useful assistance in the preparation of the article. The authors express their gratitude to the coworkers of the company "AKADEMLAZERMASH" LLC for useful discussions and ideas. The work was carried out with the support of the Russian Science Foundation (project No. 17-72-30006).

OCIS codes: 140.3530,140.3480, 140.3540, 220.3620.

References:
  1. Zayhowski J.J., Dill C. Diode-pumped passively Q-switched picosecond microchip lasers // Optics Letters. 1994. V. 19. № 18. P. 1427–1429. https://doi.org/10.1364/OL.19.001427
  2. Krebs D.J., Novo-Gradac A.M., Li S.X., Lindauer S.J., Afzal R.S., Anthony W.Y. Compact, passively Q-switched Nd: YAG laser for the MESSENGER mission to Mercury // Applied Optics. 2005. V. 44. № 9. P. 1715–1718. https://doi.org/10.1364/AO.44.001715
  3. Kallenbach R., Murphy E., Gramkow B., Rech M., Weidlich K., Leikert T., Henkelmann R., Trefzger B., Metz B., Michaelis H., Lingenauber K., DelTogno S., Behnke T., Thomas N., Piazza D., Seiferlin K. Space-qualified laser system for the BepiColombo Laser Altimeter // Applied Optics. 2013. V. 52. № 36. P. 8732–8746. https://doi.org/10.1364/AO.52.008732
  4. Krichbaumer W., Herrmann H., Nagel E., Häring R., Streicher J., Werner C., Mehnert A., Halldorsson T., Heinemann S., Peuser P., Schmitt N.P. A diode-pumped Nd: YAG lidar for airborne cloud measurements //Optics & Laser Technology. 1993. V. 25. № 5. P. 283–287. https://doi.org/10.1016/0030-3992(93)90015-8
  5. Binks D.J., Golding P.S., King T.A. Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing // Journal of Modern Optics. 2000. V. 47. № 11. P. 1899–1912. https://doi.org/10.1080/09500340008232442
  6. Lopez-Moreno C., Smith B.W., Gornushkin I.B., Omenetto N., Palanco S., Laserna J.J., Winefordner J.D. Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy // Journal of Analytical Atomic Spectrometry. 2005. V. 20. № 6. P. 552–556. https://doi.org/10.1039/B419173K
  7. Neumann J., Lang T., Huss R., Ernst M., Moalem A., Kolleck C., Kracht D. Development of a pulsed laser system for laser-induced breakdown spectroscopy (LIBS) // International Conference on Space Optics — ICSO 2012. 105642J. 20 November 2017. Proceedings of SPIE. 2017. V. 10564. P. 655–660. https://doi.org/10.1117/12.2309093
  8. Ancona A., Nodop D., Limpert J., Nolte S., Tünnermann A. Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser // Applied Physics A. 2009. V. 94. P. 19–24. https://doi.org/10.1007/s00339-008-4906-3
  9. Bhandari R., Taira T. Above 6 MW peak power at 532 nm from passively Q-switched Nd: YAG/Cr4+:YAG microchip laser // Optics Express. 2011. V. 19. № 20. P. 19135–19141. https://doi.org/10.1364/OE.19.019135
  10. Bhandari R., Taira T., Miyamoto A., Furukawa Y., Tago T. Above 3 MW peak power at 266 nm using Nd: YAG/Cr4+:YAG microchip laser and fluxless-BBO // Optical Materials Express. 2012. V. 2. № 7. P. 907–913. https://doi.org/10.1364/OME.2.000907
  11. Gao S. Passively Q-switched, intracavity frequency-doubled YVO4/Nd: YVO4/KTP green laser with a GaAs saturable absorber // Quantum Electronics. 2015. V. 45. № 11. P. 1000–1002. https://doi.org/10.1070/QE2015v045n11ABEH015829
  12. Tsunekane M., Inohara T., Ando A., Kido N., Kanehara K., Taira T. High peak power, passively Q-switched microlaser for ignition of engines // IEEE Journal of Quantum Electronics. 2010. V. 46. № 2. P. 277–284. https://doi.org/10.1109/JQE.2009.2030967
  13. Kisel V.E., Yasukevich A.S., Kondratyuk N.V., Kuleshov N.V. Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser // Quantum Electronics. 2009. V. 39. № 11. P. 1018–1022. https://doi.org/10.1070/QE2009v039n11ABEH014151
  14. Dong J., He, Y., Zhou X., Bai S. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping // Quantum Electronics. 2016. V. 46. № 3. P. 218–222. https://doi.org/10.1070/QEL15826
  15. Vainshenker A.E., Vilenskiy A.V., Kazakov A.A., Lysoy B.G., Mikhailov L.K., Pashkov V.A. Diode-pumped Q-switched Nd3+: YAG laser operating in a wide temperature range without thermal stabilisation of pump diodes // Quantum Electronics. 2013. V. 43. № 2. P. 114–116. https://doi.org/10.1070/QE2013v043n02ABEH015036
  16. Zayhowski J.J., Wilson A.L. Pump-induced bleaching of the saturable absorber in short-pulse Nd: YAG/Cr/sup 4+:YAG passively Q-switched microchip lasers // IEEE Journal of Quantum Electronics. 2003. V. 39. № 12. P. 1588–1593. https://doi.org/10.1109/JQE.2003.819535
  17. Sakai H., Kan H., Taira T. Above 1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser // Optics Express. 2008. V. 16. № 24. P. 19891–19899. https://doi.org/10.1364/OE.16.019891
  18. Wang Y., Gong M., Yan P., Huang L., Li D. Stable polarization short pulse passively Q-switched monolithic microchip laser with [110] cut Cr4+:YAG // Laser Physics Letters. 2009. V. 6. № 11. P. 788. https://doi.org/10.1002/lapl.200910079
  19. Hou D., Yin X., Wang J., Chen S., Zhan Y., Li X., Fan Y., Liu X. High power multiple wavelength diode laser stack for DPSSL application without temperature control // Proceedings of SPIE. 2018. V. 10513. P. 167–178. https://doi.org/10.1117/12.2291169