ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-12-35-45

УДК: 53.082.52; 621.3.084.2

Development of afterpulse effect model of InGaAs/InP single-photon avalanche diodes for applying in quantum key distribution systems

For Russian citation (Opticheskii Zhurnal):

Филяев А.А., Лосев А.В., Заводиленко В.В., Павлов И.Д. Разработка модели эффекта послеимпульса в однофотонных лавинных диодах на InGaAs/InP, предназначенных для применения в системах квантового распределения ключей // Оптический журнал. 2023. Т. 90. № 12. С. 35–45. https://doi.org/10.17586/1023­5086­2023­90­12­35­45

 

Filyaev A.A., Losev A.V., Zavodilenko V.V., Pavlov I.D. Development of afterpulse effect model of InGaAs/InP single­photon avalanche diodes for applying in quantum key distribution systems [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 12. P. 35–45. http://doi.org/10.17586/1023­5086­2023­90­12­35­45

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. A noise parameter, such as an afterpulse effect, that occurs in indium­gallium arsenide/indium phosphide single­photon avalanche diodes when operated as part of a single­photon detector in quantum key distribution systems has been investigated. The aim of study is the analysis of indium­gallium arsenide/indium phosphide single­photon avalanche diodes afterpulse effect estimation approaches used in the world practice for quantum key distribution systems and the development of measurement technique and model for estimating the afterpulse effect in indium­gallium arsenide/indium phosphide single­photon avalanche diodes. Method. For the experimental measurement of the afterpulse probability in indium­gallium arsenide/indium phosphide single­photon avalanche diodes a special stand has been used. All components of this stand are controlled by the software created in LabVIEW. The developed model of afterpulse probability is based on the non­Markovian character of this effect. Main results. The measurement technique and the probabilistic model for estimating the afterpulse based on the recursive nature of this effect in indium­gallium arsenide/indium phosphide single­photon avalanche diodes are developed. This makes it possible to estimate the true value of the afterpulse probabilityby the reaction to a single triggering of single­photon detector with indium­gallium arsenide/indium phosphide single­photon avalanche diodes in its composition. The analysis of approaches to estimating the afterpulse used in world practice for quantum key distribution systems is performed. The advantages of the developed approach over the standard methods that do not take into account the non­Markov nature of the effect under consideration are demonstrated. Practical significance. The approach to determining the afterpulse probability of indium­gallium arsenide/indium phosphide single­photon avalanche diodes in the form of two models (simple and complex) has been developed, which allows to compromise between the accuracy of calculations and their complexity for the application of such devices in quantum key distribution systems.

Keywords:

single­photon detectors, quantum key distribution system, single­photon avalanche diodes, afterpulse probability

Acknowledgements:
the research work was commissioned by JSC "Russian Railways" (Contract № 925/OKE­DKSS/21/1/1 dated December 22, 2021).

OCIS codes: 270.5565, 230.5160, 250.1345

References:
  1. Yao N., Yao Q., Xie X.P., Liu Y., Xu P., Fang W., Zheng M.Y., Fan J., Zhang Q., Tong L., Pan J.W. Optimizing up­conversion single­photon detectors for quantum key distribution // Optics Express. 2020. V. 28. № 17. P. 25123–25133. https://doi.org/10.1364/OE.397767
  2. Yuan Z., Plews A., Takahashi R., Doi K., Tam W., Sharpe A.W., Dixon A.R., Lavelle E., Dynes J.F., Murakami A., Kujiraoka M., Lucamarini M., Tanizawa Y., Sato H., Shields A.J. 10­Mb/s quantum key distribution // Journal of Lightwave Technology. 2018. V. 36. № 16. P. 3427–3433. https://doi.org/10.1109/JLT.2018.2843136  
  3. Cañas G., Vera N., Cariñe J., González P., Cardenas J., Connolly P.W.R., Przysiezna A., Gómez E.S., Figueroa M., Vallone G., Villoresi P., Ferreira da Silva T., Xavier G.B., Lima G. High­dimensional decoy­state quantum key distribution over multicore telecommunication fibers // Physical Review A. 2017. V. 96. № 2. P. 022317. https://doi.org/10.1103/PhysRevA.96.022317
  4. Zhao L.Y., Wu Q.J., Qiu H.K., Qian J.L., Han Z.F. Practical security of wavelength­multiplexed decoy­state quantum key distribution // Physical Review A. 2021. V. 103. № 2. P. 022429. https://doi.org/10.1103/PhysRevA.103.022429
  5. Wang F.X., Chen W., Li Y.P., He D.Y., Wang C., Han Y.G., Wang S., Yin Z.Q., Han Z.F. Non­Markovian property of afterpulsing effect in single­photon avalanche detector // Journal of Lightwave Technology. 2016. V. 34. № 15. P. 3610–3615. https://opg.optica.org/jlt/abstract.cfm?uri=jlt­34­15­3610#articleCitations
  6. Wang C., Wang J., Xu Z., Li J., Wang R., Zhao J., Wei Y. Afterpulsing effects in SPAD­based photon­counting communication system // Optics Communications. 2019. V. 443. P. 202–210. https://doi.org/10.1016/j.optcom.2019.03.039
  7. Bethune D.S., Risk W.P., Pabst G.W. A high­performance integrated single­photon detector for telecom wavelengths // Journal of modern optics. 2004. V. 51. № 9–10. P. 1359–1368. https://doi.org/10.1080/09500340408235278
  8. Yuan Z.L., Kardynal B.E., Sharpe A.W., Shields A.J. High speed single photon detection in the near infrared // Applied Physics Letters. 2007. V. 91. № 4. P. 041114. https://doi.org/10.1063/1.2760135
  9. Liu J., Zhang C., Li Y., Wang Z. 1.2­GHz gated single­photon detector with simple filtering // Optoelectronic Devices and Integration. 2014. V. 9270. P. 23–29. https://doi.org/10.1117/12.2071434
  10. Chunnilall C.J., Degiovanni I.P., Kück S., Müller I., Sinclair A.G. Metrology of single­photon sources and detectors: a review // Optical Engineering. 2014. V. 53. № 8. P. 081910. https://doi.org/10.1117/1.OE.53.8.081910
  11. Liang Y., Chen Y., Huang Z., Bai G., Yu M., Zeng H. Room­temperature single­photon detection with 1.5­GHz gated InGaAs/InP avalanche photodiode // IEEE Photonics Technology Letters. 2016. V. 29. № 1. P. 142–145. https://doi.org/10.1109/LPT.2016.2630273
  12. Zhang Y., Zhang X., Shi Y., Ying Z., Wang S. Electro­optic modulator based gate transient suppression for sine­wave gated InGaAs/InP single photon avalanche photodiode // Optical Engineering. 2014. V. 53. № 6. P. 067102. https://doi.org/10.1117/1.OE.53.6.067102
  13. Bouzid A., Han S.W., Lee M.S., Moon S. Single­photon detector at telecommunication wavelengths using an analog integrator for ultra small avalanche discrimination // Applied Physics Express. 2013. V. 6. № 5. P. 052201. https://doi.org/10.7567/APEX.6.052201
  14. Korzh B., Lunghi T., Kuzmenko K., Boso G., Zbinden H. Afterpulsing studies of low­noise InGaAs/InP single­photon negative­feedback avalanche diodes // Journal of Modern Optics. 2015. V. 62. № 14. P. 1151–1157. https://doi.org/10.1080/09500340.2015.1024294
  15. Itzler M.A., Jiang X., Entwistle M. Power law temporal dependence of InGaAs/InP SPAD afterpulsing // Journal of Modern Optics. 2012. V. 59. № 17. P. 1472–1480. https://doi.org/10.1080/09500340.2012.698659
  16. Arahira S., Murai H. Effects of afterpulse events on performance of entanglement­based quantum key distribution system // Japanese Journal of Applied Physics. 2016. V. 55. № 3. P. 032801. https://doi.org/10.7567/JJAP.55.032801