ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-02-11-16

УДК: 535.421, 778.38

Information systems with aperture compression

For Russian citation (Opticheskii Zhurnal):

Корешев С.Н., Старовойтов С.О. Информационные системы с компрессией апертуры // Оптический журнал. 2023. Т. 90. № 2. С. 11–16. http:doi.org/10.17586/1023-5086-2023-90-02-11-16

 

Koreshev S.N., Starovoitov S.O.  Information systems with aperture compression [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 2. P. 11–16. http:doi.org/10.17586/1023-5086-2023-90-02-11-16

For citation (Journal of Optical Technology):

S. N. Koreshev and S. O. Starovoitov, "Information systems with aperture compression," Journal of Optical Technology. 90(2), 59-61 (2023). https://doi.org/10.1364/JOT.90.000059

Abstract:

Subject of study. Variants of circuit solutions of optical systems, distinguished by high aperture ratio at relatively low resolution, are proposed. Aim of study. Increasing the energy of the optical signal entering the optical information systems. Method. The proposed technical solutions are based on circuit solutions of a light guide optical systems of augmented reality with hologram mirrors used in the reverse beams path. Main results. The possibility of using the light guide with a hologram mirror as an aperture compressor in optical systems, for example, receiving optical communication systems in free space or laser rangefinders, is shown. Variants of schemes of optical systems with a light-guide aperture compressor operating in monochromatic radiation at several wavelengths and achromatic systems are presented. In the latest version of the optical system, it is proposed to use a diffraction grating with an asymmetric profile stroke instead of the hologram mirror. Practical significance. The proposed variants of circuit solutions allow to significantly increase the intensity of the optical signal received by them due to the use of a non-tunable aperture compressor built on the basis of the light guide with the hologram mirror.

Keywords:

aperture compressor, light guide, hologram mirror, grating with a profiled stroke, optical communication in free space, demultiplexer, laser range finder

OCIS codes: 090.0090, 090.2870, 090.2890.

References:

1.    Wang Y., Wang D., Ma J. On the performance of coherent OFDM systems in free-space optical communications // IEEE Photonics Journal. 2015. V. 7. № 4. P. 1–10.

2.   Son K., Mao S. A survey of free space optical networks // Digital Communications and Networks. 2017. V. 3. № 2. P. 67–77.

3.   Kumar A., Dhiman A., Kumar D., Kumar N. Free space optical communication system under different weather conditions // IOSR Journal of Engineering. 2013. V. 3. № 12. P. 52–58.

4.   Denisyuk Yu.N. Principles of holography. Leningrad: Vavilov State Optical Institute, 1979. 124 p. (in Russian).

5.   Putilin A.N. Holographic optical elements in virtual reality devices // World of Holography / Ed. by Putilin A.N., Morozov A.V., Druzhin V.V. 2017. V. 3. № 1. P. 35. (in Russian).

6.   Mukawa H. A full-color eyewear display using planar waveguides with reflection volume holograms // J. Soc. Info. Disp. / Ed. by Mukawa H., Akutsu K., Matsumura I., Nakano S., Yoshida T., Kuwahara M., Aiki K. 2009. № 17. P. 185–193.

7.    Bell C. Head-mounted display with electrochromic dimming module for augmented and virtual reality perception // Patent US 2015/045779. 2015.

8.   Koreshev S.N., Shevtsov M.K. Holographic sight of the light-guide type with a synthesized pupil // Journal of Optical Technology. 2018. V. 85. № 3. P. 153–156. https:doi.org/10.1364/JOT.85.000153

9.   Koreshev S.N. Construction principles and key technologies of light guide-type augmented reality devices with hologram and diffractive optical elements (in Russian) // HOLOEXPO 2019: XVI International Conference on Holography and Applied Optical Technologies: abstracts. 2019. P. 56–63.

10. Gerke R.R., Koreshev S.N., Semenov G.B., Smirnov V.V. Hologram optics at S.I. Vavilov State Optical Institute // Journal of Optical Technology. 1994. V. 61. № 1. P. 20–30.

11.       Clube F., Gray S., Struchen D., Tisserand J., Malfoy S., Darbellay Y. Holographic microlithography // Opt. Eng. 1995. V. 34. № 9. P. 2724–2730.