ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-02-17-25

Performance enhancement of AlGaN-based deep ultraviolet laser diode using two-stepped doped lower waveguide

For Russian citation (Opticheskii Zhurnal):

Sajid Ullah Khan, Mussaab Ibrahim Niass, Zhang Aoxiang, Fang Wang, Juin J. Liou, Yuhuai Liu. Performance enhancement of AlGaN-based deep ultraviolet laser diode using two stepped-doped lower waveguide (Повышение производительности лазерного диода коротковолнового ультрафиолетового излучения на основе AlGaN с помощью низколегированного двухступенчатого волновода) [in English] // Opticheskii Zhurnal. 2023. V. 90. № 2. P. 17–25.


Sajid Ullah Khan, Mussaab Ibrahim Niass, Zhang Aoxiang, Fang Wang, Juin J. Liou, Yuhuai Liu. Performance enhancement of AlGaN-based deep ultraviolet laser diode using two stepped-doped lower waveguide (Повышение производительности лазерного диода коротковолнового ультрафиолетового излучения на основе AlGaN с помощью низколегированного двухступенчатого волновода) [на англ. языке] // Оптический журнал. 2023. Т. 90. № 2. С. 17–25. 10.17586/1023-5086-2023-90-02-17-25

For citation (Journal of Optical Technology):

Sajid Ullah Khan, Mussaab Ibrahim Niass, Aoxiang Zhang, Fang Wang, Juin J. Liou, and Yuhuai Liu, "Performance enhancement of an AlGaN-based deep-ultraviolet laser diode using a two-stepped doped lower waveguide," Journal of Optical Technology. 90(2), 62-67 (2023).


Subject of Study. A deep-ultraviolet laser diode performance is improved using a two-stepped Si-doped lower waveguide. Method. The impact of the variations on the AlGaN-based deep ultraviolet laser diodes has been evaluated based on the simulated results after the theoretical calculations. The two AlGaN-based ultraviolet laser diodes as traditional device and a proposed device have been analyzed comparatively based on their performances within a nomination wavelength region range of 269-280 nm. Main Results. Using a two-stepped Si-doped lower waveguide, the lasing threshold laser diode current decreases in the proposed device D2 in comparison to the traditional device D1. The operating threshold laser diode voltage of D1 is 13.8 V, and D2 is 4.24 V, respectively, and a lasing threshold laser diode current of 0.4 A and 0.002 A. Practical significance. The optimization of the AlGaN-based ultraviolet laser diodes design following the perfect bulk aluminium nitride substrate in the traditional device is the crucial factor of the practical significance of the scientific field laser diode utilized in the proposed device. The deep-ultraviolet laser diodes performance is improved when a suitably constructed two-stepped Si-doped lower waveguide substitutes the traditional lower waveguide. The noted improvements are the reduction in total optical loss with the improved optical confinement factor. It's primarily due to an increase in hole injection current and a decrease in electron leakage current.


laser diodes, semiconductor, multiple quantum well, step doping


1.    Zhang Z., Kushimoto M., Sakai T., Sugiyama N., Schowalter LJ., Sasaoka C., Amano H. A 271.8 nm deep-ultraviolet laser diode for room temperature operation // Applied Physics Express. 2019. V. 12. № 12. P. 124003. 10.7567/1882-0786/ab50e0.

2.   Simon J., Protasenko V., Lian C., Xing H., Jena D. Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures // Science. 2010. V. 327. № 5961. P. 60–64.1183226. 10.1126/science.1183226.

3.   Hou Y., Zhao D., Liang F., Zhu J., Chen P., Liu Z., Yang J., Xing Y., Liu S. Performance improvement of GaN-based blue and ultraviolet double quantum well laser diodes by using stepped-doped lower waveguide // Materials Science in Semiconductor Processing. 2021. V. 121. P. 105355. 10.1016/j.mssp.2020.105355.

4.   Liang F., Zhao D., Jiang D., Liu Z., Zhu J., Chen P., Yang J., Liu W., Liu S., Xing Y., Zhang L. Improvement of slope efficiency of GaN-Based blue laser diodes by using asymmetric MQW and InxGa1-xN lower waveguide // Journal of Alloys and Compounds. 2018. V. 731. № 243-247. P. 1016. 10.1016/j.jallcom.2017.09.328.

5.   Jiang L., Liu J., Tian A., Cheng Y., Li Z., Zhang L., Zhang S., Li D., Ikeda M., Yang H. GaN-based green laser diodes // Journal of Semiconductors. 2016. V. 37. № 11. P. 111001. 10.1088/1674-4926/37/11/111001.

6.   Lin Y.R., Liou B.T., Chang J.Y., Kuo Y.K. Polarization engineering in III-nitride based ultraviolet light-emitting diodes // InPhysics and Simulation of Optoelectronic Devices XXI. 2013. V. 8619. P. 397–402. 10.1117/12.2003779.

7.    Alahyarizadeh G., Amirhoseiny M., Hassan Z. Effect of different EBL structures on deep violet InGaN laser diodes performance // Optics & Laser Technology. 2016. V. 76. P. 106–112. 10.1016/j.optlastec.2015.08.007.

8.   Chen J.R., Lee C.H., Ko T.S., Chang Y.A., Lu T.C., Kuo H.C., Kuo Y.K., Wang S.C. Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with electronic blocking layers// Journal of Lightwave Technology. 2008. V. 26. № 3. P. 329–337. 10.1109/JLT.2007.909908.

9.   Yang W., Li D., Liu N., Chen Z., Wang L., Liu L., Li L., Wan C., Chen W., Hu X., Du W. Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser diodes // Applied Physics Letters. 2012. V. 100. № 3. P. 031105. 10.1063/1.3678197.

10. Zhang Y., Kao T.T., Liu J., Lochner Z., Kim S.S., Ryou J.H., Dupuis R.D., Shen S.C. Effects of a step-graded AlxGa1–xN electron blocking layer in InGaN-based laser diodes // Journal of Applied Physics. 2011. V. 109. № 8. P. 083115. 10.1063/1.3581080.

11.  Khan S.U., Nawaz S.M., Niass M.I., Wang F., Liu Y. Effects of the Stepped-Doped Lower Waveguide and a Doped p-Cladding Layer on AlGaN-Based Deep-Ultraviolet Laser Diodes // Journal of Russian Laser Research. 2022. V. 3. № 3. P. 1–8. 10.1007/s10946-022-10061-2.

12.  Lee S.N., Cho S.Y., Ryu H.Y., Son J.K., Paek H.S., Sakong T., Jang T., Choi K.K., Ha K.H., Yang M.H., Nam O.H. High-power GaN-based blue-violet laser diodes with AlGaN/GaN multiquantum barriers // Applied physics letters. 2006. V. 88. № 11. P. 111101. 10.1063/1.2185251.

13.  Xing Y., Zhao D.G., Jiang D.S., Li X., Liu Z.S., Zhu J.J., Chen P., Yang J., Liu W., Liang F., Liu S.T. Suppression of electron and hole overflow in GaN-based near-ultraviolet laser diodes // Chinese Physics B. 2018. V. 27. № 2. P. 028101. 10.1088/1674-1056/27/2/028101.

14.  Zhang Z., Kushimoto M., Yoshikawa A., Aoto K., Schowalter L.J., Sasaoka C., Amano H. Continuous-wave lasing of AlGaN-based ultraviolet laser diode at 274.8 nm by current injection // Applied Physics Express. 2022. V. 15. № 4. P. 041007. 10.35848/1882-0786/ac6198.

15.  Amano H., Collazo R., De Santi C., Einfeldt S., Funato M., Glaab J., Hagedorn S., Hirano A., Hirayama H., Ishii R., Kashima Y. The 2020 UV emitter roadmap // Journal of Physics D: Applied Physics. 2020. V. 53. № 50. P. 503001. 10.1088/1361-6463/aba64c.

16.  Niass M.I., Zang J., Lu Z., Du Z., Chen X., Qu Y., Wang F., Liu Y. Structure optimization of 266 nm Al0.53GaN/Al0.75GaN SQW duv-laser diode // Journal of Crystal Growth. 2019. V. 506. P. 24–29. 10.1016/j.jcrysgro.2018.09.038.

17.  Nawaz S.M., Niass M.I., Wang Y., Xing Z., Wang F., Liu Y. Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide // Superlattices and Microstructures. 2020. V. 145. P. 106643. 10.1016/j.spmi.2020.106643.