ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-02-59-67

УДК: 535.36:534.23

Simulation of the acousto-optic deflector of terahertz radiation using a sectioned ultrasound transducer

For Russian citation (Opticheskii Zhurnal):

Никитин П.А. Моделирование работы акустооптического дефлектора терагерцевого излучения, использующего секционированный излучатель ультразвука // Оптический журнал. 2023. Т. 90. № 2. С. 59–67. http:doi.org/10.17586/1023-5086-2023-90-02-59-67

 

Nikitin P.A. Simulation of the acousto-optic deflector of terahertz radiation using a sectioned ultrasound transducer [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 2. P. 59–67. http:doi.org/10.17586/1023-5086-2023-90-02-59-67

For citation (Journal of Optical Technology):

P. A. Nikitin, "Simulation of an acousto-optic deflector of terahertz radiation based on a sectioned ultrasound transducer," Journal of Optical Technology. 90(2), 88-92 (2023). https://doi.org/10.1364/JOT.90.000088

Abstract:

Subject of study. In this paper, the features of the acousto-optic diffraction of terahertz radiation by an ultrasonic field with a periodic inhomogeneity are theoretically investigated. Aim of study. Revealing the optimal parameters for the implementation of an effective terahertz radiation deflector. Method. To improve the energy efficiency of the deflector, liquefied SF6 gas was chosen as the interaction medium, and to increase the number of resolvable light spots, it was proposed to use a sectioned phased ultrasound transducer. Main results. The features of the acoustic field generated by such a transducer are shown. Analytical relations are derived for the main parameters of the acousto-optic deflector. Practical significance. The possibility of a fivefold increase in the number of resolvable spots compared to an acousto-optic deflector using a single-section transducer of the same length is demonstrated.

Keywords:

acousto-optic interaction, diffraction, terahertz radiation, liquefied inert gas, acoustic field

OCIS codes: 050.1940, 070.1060, 170.7170, 260.3090

References:

1.    Sarieddeen H., Alouini M.-S., Al-Naffouri T.Y. An overview of signal processing techniques for terahertz communications // Proceedings of the IEEE. 2021. V. 109. № 10. P. 1628–1665. https:doi.org/10.1109/JPROC.2021.3100811

2.   Monnai Y., Altmann K., Jansen C., Hillmer H., Koch M., Shinoda H. Terahertz beam steering and variable focusing using programmable diffraction gratings // Opt. Expr. 2013. V. 21. № 2. P. 2347–2354. https:doi.org/10.1364/OE.21.002347

3.   Hashemi M.R.M., Yang S.H., Wang T.Y., Sepulveda N., Jarrahi M. Electronically-controlled beam-steering through vanadium dioxide metasurfaces // Sci. Rep. 2016. V. 6. Art. n. 35439. https:doi.org/10.1038/srep35439

4.   Tamagnone M., Capdevila S., Lombardo A., Wu J., Centeno A., Zurutuza A., Ionescu A.M., Ferrari A.C., Mosig J.R. Graphene reflectarray metasurface for terahertz beam steering and phase modulation. 2018. arXiv:1806.02202.

5.   Yushkov K.B., Anikin S.P., Chizhikov S.I., Esipov V.F., Kolesnikov A.I., Makarov O.Yu., Potanin S.A., Tatarnikov A.M. Recent advances in acousto-optic instrumentation for astronomy // Acta Physica Polonica. 2015. V. 127. № 1. P. 81–83. http://dx.doi.org/10.12693/APhysPolA.127.81

6.   Son J.-H., Oh S.J., Cheon H. Potential clinical applications of terahertz radiation // Journal of Applied Physics. 2019. V. 125. № 19. Art. n. 190901. https:doi.org/10.1063/1.5080205

7.    Pozhar V.I., Machikhin A.S., Gaponov M.I., Shirokov S.v., Mazur M.M., Sheryshev A.E. Hyper-spectrometer based on an acousto-optic tunable filters for UAVS // Light and Engineering. 2019. V. 27. № 3. P. 99–104. http://dx.doi.org/10.33383/2018-029

8.   Pichugina Y.V., Garnov S.V., Bulkin Y.N. 2D scanning system of the acousto-optical deflector with high diffraction efficiency // J. Phys.: Conf. Ser. 2021. V. 2091. Art. n. 012013. https:doi.org/10.1088/1742-6596/2091/1/012013

9.   Durr W. Acousto-optic interaction in gases and liquid bases in the far infrared // International Journal of Infrared and Millimeter Waves. 1986. V. 7. № 10. P. 1537–1558. https:doi.org/10.1007/BF01010756

10. Nikitin P.A., Gerasimov V.V. Optimal design of an ultrasound transducer for efficient acousto-optic modulation of terahertz radiation // Materials. 2022. V. 15. № 3. Art. n. 1203. https:doi.org/10.3390/ma15031203

11.  Antonov S.N., Filatov A.L. Acousto-optic diffraction in paratellurite by a slow acoustic mode. Increase of diffraction efficiency of divergent light // Technical Physics. 2018. V. 63. № 6. P. 876–880. https:doi.org/10.1134/S106378421806004X

12.  Aboujeib J., Perennou A., Quintard V., Bihan J.L. Planar phased-array transducers associated with specific electronic command for acousto-optic deflectors // J. of Opt. A: Pure and Appl. Opt. 2007. V. 9. № 5. P. 463–469. https:doi.org/10.1088/1464-4258/9/5/007

13.  Balakshy V., Kupreychik M., Mantsevich S., Molchanov V. Acousto-optic cells with phased-array transducers and their application in systems of optical information processing // Materials. 2021. V. 14. № 2. Art. n. 451. https:doi.org/10.3390/ma14020451

14.  Gordon E.I. A review of acoustooptical deflection and modulation devices // Proc. of the IEEE. 1966. V. 54. № 10. P. 1391–1401. https:doi.org/10.1364/AO.5.001629 15.       Reddy G.D., Saggau P. Fast three-dimensional laser scanning scheme using acousto-optic deflectors // J. of Biomedical Opt. 2005. V. 10. № 6. Art. n. 064038. https:doi.org/10.1117/1.2141504