ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-05-63-75

УДК: 681.78

Comparative analysis of design algorithms for optical systems using composite holographic optical elements

For Russian citation (Opticheskii Zhurnal):

Ахметов Д.М., Муслимов Э.Р., Харитонов Д.Ю., Павлычева Н.К., Гуськов И.А., Гильфанов А.Р., Терентьев А.И. Сравнительный анализ алгоритмов расчета оптических систем с использованием композитных голограммных оптических элементов // Оптический журнал. 2023. Т. 90. № 5. С. 63–75. http://doi.org/10.17586/1023­5086­2023­90­05­63­75

 

Akhmetov D.M., Muslimov E.R., Kharitonov D.Y., Pavlychevа N.K., Guskov I.A., Gilfanov A.R., Terentyev A.I. Comparative analysis of design algorithms for optical systems using composite holographic optical elements [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 5. P. 63–75. http://doi.org/10.17586/1023­5086­2023­90­05­63­75

For citation (Journal of Optical Technology):
D. M. Akhmetov, E. R. Muslimov, D. Y. Kharitonov, N. K. Pavlycheva, I. A. Guskov, A. R. Gilfanov, and A. I. Terentyev, "Comparative analysis of design algorithms for optical systems using composite holographic optical elements," Journal of Optical Technology. Technol. 90(5), 262-270 (2023)
Abstract:

Subject of study. Two algorithms for design of an optical scheme based on a composite hologram optical element aimed at optimizing the diffraction efficiency, the first of which is based on the successive partitioning of the hologram element, the second algorithm is based on averaging locally optimized hologram parameters. The aims of this work are to develop algorithms for determining the configuration of a composite hologram and its parameters in each of the subapertures, as well as their further use to achieve a high diffraction efficiency uniformly distributed over the working spectral range of the device Method. The algorithms are based on the application of the Welford equation for ray tracing through a hologram and the Kogelnik theory for simultaneous calculation of diffraction efficiency in several sub­apertures. Main results. As a demonstrative example, a design and analysis of a spectrograph optical scheme operating in the near infrared region with a high angular dispersion is given. A diverging beam with a numerical aperture of 0.14 is fed to the input of the spectrograph. The spectrograph operates in the wavelength range from 830 to 870 nm, the center of which corresponds to the emission wavelength of a standard laser source. The optical system consists of a collimator, two volume­phase transmission holographic gratings, a camera lens, and a photodetector. It is shown that the greatest gain in diffraction efficiency for a composite hologram of three rectangular sub­apertures in comparison with a single hologram grating without parameters optimization reaches 5.1 times and is observed at the long­wavelength edge of the spectrum. Practical significance. The proposed algorithms will allow one to determine the optimal number, shape and location of the composite hologram sub­apertures. The obtained results will make it possible to design a spectrograph characterized by an increased and more uniform image brightness over the entire working range.

Keywords:

holographic diffraction grating, composite holographic element, diffraction efficiency, near infrared domain

OCIS codes: 050.2065, 230.1950, 090.2820

References:
  1. Palmer C., Loewen E. Diffraction gratings handbook. Rochester: Newport Corp., 2014. 271 p.
  2. Caulfield H.J. Handbook of optical holography. N.Y.: Academic Press, 1979. 654 p.
  3. Muslimov E., Akhmetov D., Kharitonov D., et al. Composite waveguide holographic display // Proc. SPIE. V. 12138. Optics, Photonics and Digital Technologies for Imaging Applications VII, 121380S (17 May 2022). https:doi.org/10.1117/12.2621064
  4. Akhmetov D.M., Muslimov E.R., Kharitonov D.Y., et al. Comparative analysis of algorithms for calculating optical systems using composite hologram optical elements [in Russian] // XIX Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2022 Science and Practice. (Abstracts of reports). St. Petersburg, Russia. 2022. Р. 125–131.
  5. Muslimov E., Nureev I., Morozov O., et al. Spectrographs with high angular dispersion: design and optimization approach // Opt. Eng. 2018. V. 57. № 12. Р. 125104. http:doi.org/10.1117/1.OE.57.12.125104
  6. Trager F. Springer handbook of lasers and optic. N.Y.: Springer, 2007. 1342 p.
  7. Rose B., Rasmussen T., Khalfaoui C., et al. Wavelength division multiplexed device // US Patent 6 978 062 B2. 2001. Publ. Dec. 20, 2005.
  8. Bastue J., Herholdt-Rasmussen N., Rasmussen M., et al. Transmission spectrometer with improved spectral and temperature characteristics // US Patent 7 180 590 B2. 2003. Publ. Feb. 20, 2007.
  9. Landsberg G.S. Optics: A textbook [in Russian]. 6th ed. Moscow: FIZMATLIT Publisher, 2010. 848 p.

10. Welford W. A vector raytracing equation for hologram lenses of arbitrary shape // Opt. Commun. 1975. V. 14. P. 322–323. http:doi.org/10.1016/0030-4018(75)90327-23

11. Kogelnik H. Coupled wave analysis for thick hologram gratings // Bell Syst. Tech. J. 1969. V. 48. P. 2909–2947. http:doi.org/10.1002/J.1538-7305.1969.TB01198.X

12. Kidger M.J. Use of the Levenberg–Marquardt (damped least-squares) optimization method in lens design // Opt. Eng. 1993. V. 32. № 8. Р. 1731–1740. https:doi.org/10.1117/12.145076

13. Byrd R.H., Gilbert J.C., and Nocedal J. A Trust region method based on interior point techniques for nonlinear programming // Mathematical Programming. 2000. V. 89. № 1. Р. 149–185. https:doi.org/10.1007/PL00011391

  1. Paysakhson, I.V. Optics of spectral devices [in Russian]. 2nd ed. Leningrad: Mashinostroenie Publisher, 1975. 312 p.