ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-05-86-92

УДК: 778.38.01:535

Reflection holographic photopolymer gratings with an anharmonic modulation of the refractive index

For Russian citation (Opticheskii Zhurnal):

Деревянко Д.И., Пен Е.Ф., Шелковников В.В. Отражательные голографические фотополимерные решетки с ангармоническим распределением профиля модуляции показателя преломления // Оптический журнал. 2023. Т. 90. № 5. С. 86–92.


Derevyanko D.I., Pen E.F., Shelkovnikov V.V. reflection holographic photopolymer gratings with an anharmonic modulation of the refractive index [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 5. P. 86–92.

For citation (Journal of Optical Technology):

Dmitry I. Derevyanko, Evgeniy F. Pen, and Vladimir V. Shelkovnikov, "Reflection holographic photopolymer gratings with an anharmonic modulation of the refractive index," Journal of Optical Technology. 90(5), 278-281 (2023)


The subject of research is reflection holographic photopolymer gratings with an anharmonic profile of the refractive index modulation. The goal of this work is to determine the conditions for the formation in a holographic photopolymer material synthesized at the N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, volume reflection holograms with a high diffraction efficiency in the first and second diffraction orders, as well as their characterization, a calculation of refractive index modulation in the first and second orders of diffraction, a determination of dependence of diffraction efficiency on the type of polymer binder, as well as irradiated intensity. Method. The characterization of the obtained holograms included recording of the formed holograms transmission spectra, theoretical evaluation of their diffraction efficiency and refractive index modulation amplitude using known formulas. Results. The diffraction and spectral properties of holographic photopolymer gratings with a high anharmonic modulation of refractive index modulation have been studied. Samples of the reflection gratings with a second order diffraction efficiency of 90% were obtained. The dependence of these properties on the type of polymer matrices (polyvinyl acetate, polyurethane), as well as on the intensity of the incident radiation, is established. Practical significance. The high efficiency of the diffraction second order in reflection photopolymer holograms can be useful for creating additional properties of security elements.


photopolymers, reflection holograms, refractive index modulation

OCIS codes: 160.3380, 160.5335

  1. Vorzobova N., Sokolov P. Application of photopolymer materials in holographic technologies // Polymers. 2019. V. 1 № 12. P. 2020.
  2. Bruder F.-K., Bang H., Fäcke T., et al. Precision holographic optical elements in Bayfol HX photopolymer // Proc. SPIE. 2016. V. 9771. P. 977103.
  3. Akbari H., Naydenova I., Martin S. Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications // Appl. Opt. 2014. V. 5 P. 1343–1353.
  4. Kogelnik H. Coupled wave theory for thick hologram gratings // The Bell System Technical J. 1969. V. 48. P. 2909–2945.
  5. Zhao G., Mourolis P. Second order grating formation in dry holographic photopolymers // Opt. Commun. 199 V. 115. № 5–6. P. 528–532.
  6. Neipp C., Beléndez A., Gallego S., et al. Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material // Opt. Exp. 2003. V. 11. № 1 P. 1835–1843.
  7. Massenot S., Kaiser J.-L., Chevallier R., et al. Study of the dynamic formation of transmission gratings recorded in photopolymers and holographic polymer-dispersed liquid crystals // Appl. Opt. 2004. V. 43. № 29. P. 5489–549
  8. Pen E.F. Experimental study of high-order reflections on volume reflection holographic gratings // Quant. Electron. 201 V. 48. № 6. С. 545–549.
  9. Bruder F.-K., Fäcke T., Rainer H., et al. Second harmonics HOE recording in Bayfol HX // Proc. SPIE. 2015. V. 9508. P. 95080G1.

10. Shelkovnikov V.V., Pen E.F., Vasiliev E.V., et al. Photopolymer compositions for recording reflective holograms in a wide spectral range // Rus. Patent № 2552351. Publ. 10.06.2015.

11. Derevyanko D.I., Shelkovnikov V.V., Aliev S.I., et al. Thin-layer holographic photopolymer materials with high refractive index modulation // Optoelectronics, Instrumentation and Data Proc. 2021. V. 57. № 6. Р. 584–591.

12. Babin S.A., Vasiliev E.V., Kovalevsky V.I., et al. Methods and devices for testing holographic photopolymer materials [in Russian] // Autometry. 2003. № 2. Р. 57–70.

13. Pen E.F., Vyukhina N.N., Tverdokhleb P.E., et al. Measurement and analysis of the angular selectivity characteristics of holograms in photopolymer materials // Instruments and Experimental Techniques. 2022. V. 65. № 2. P. 292–300.

14. Guoheng Zhao, Mouroulis P. Diffusion model of hologram formation in dry photopolymer materials // J. Modern Opt. 1994. V. 41. № 10. P. 1929–1939.

15. Stiles A., Tison T.-A., Pruitt L., et al. Photoinitiator selection and concentration in photopolymer formulations towards large-format additive manufacturing // Polymers. 2022. V. 14. P. 2708.

16. Close C.E., Gleeson M.R., Mooney D.A., et al. Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion // JOSA B. 2011. V. 28. № 4. P. 842–850.

17. Close C.E., Gleeson M.R., Sheridan J.T. Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings // JOSA B. 2011. V. 28. № 4. P. 658–666.

  1. Bruder F.-K., Fäcke T., and Rölle T. The chemistry and physics of Bayfol HX film holographic photopolymer // Polymers. 2017. V. 9. № 10. P. 472–494.