ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-08-64-76

УДК: 504.064.37; 551.510.522

Greenhouse gases atmospheric measurements simulation by a dual-channel infrared lidar system

For Russian citation (Opticheskii Zhurnal):

Садовников С.А., Яковлев С.В., Кравцова Н.С. Моделирование атмосферных измерений парниковых газов двухканальной лидарной системой инфракрасного диапазона // Оптический журнал. 2023. Т. 90. № 8. С. 64–76. http://doi.org/10.17586/1023-5086-2023-90-08-64-76

 

Sadovnikov S.A., Yakovlev S.V., Kravtsova N.S. Greenhouse gases atmospheric measurements simulation by a dual-channel infrared lidar system [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 8. P. 64–76. http://doi.org/10.17586/1023-5086-2023-90-08-64-76

For citation (Journal of Optical Technology):

 Sergey Sadovnikov, Semyon Yakovlev, and Natalya Kravtsova, "Atmospheric measurement simulation of greenhouse gases using a dual-channel infrared lidar system," Journal of Optical Technology. 90(8), 456-463 (2023). https://doi.org/10.1364/JOT.90.000456

Abstract:

Subject of study. Atmospheric gas analysis using a two-channel infrared lidar system. Aim of study. Development of a lidar system for measuring the content of greenhouse gases (H2O and CO2) in the lower troposphere using two channels for detecting near infrared laser radiation for simultaneous reconstruction of spatially resolved profiles and concentrations of the studied gases averaged along the sounding path. Method. When solving the problems considered in the work, the method of differential absorption and scattering (DIAL) and the method of differential optical absorption spectroscopy (DOAS) are used. A promising approach is one that combines the capabilities of both methods and provides simultaneous acquisition of spatially resolved using differential absorption and scattering and spectrally resolved using differential optical absorption spectroscopy information on the concentration of gases in the atmosphere. Main results. The calculation of the function of overlapping the field of view of the receiver and the laser beam of the lidar system is carried out, and the optimal geometric parameters of its receiving-transmitting part are determined. By means of numerical simulation of the transmission spectra of the atmosphere and lidar signals for various environmental conditions, the informative range of carbon dioxide and water vapor sensing has been determined. Several configurations of the lidar system with the generation of nanosecond radiation pulses in the near infrared spectral range are proposed. Experimental measurements of the energy and spectral characteristics of the lidar radiation source confirmed the possibility of its use for solving problems of remote sensing of measured gases. Practical significance. The results can be used in the development of measuring systems for monitoring the gas composition of the atmosphere in industrial centers, at background measuring stations, and in areas of marsh ecosystems.

Keywords:

lidar, troposphere, greenhouse gases, infrared range, overlap function

Acknowledgements:

the research was carried out at the expense of the grant of the Russian Science Foundation № 22-79-10203, https://rscf.ru/en/project/22-79-10203/

OCIS codes: 010.7030, 010.3640.

References:

REFERENCES

1.    Belikov D., Arshinov M., Belan B. et. al. Analysis of the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 and CH4 at Tower Network in Siberia from 2005 to 2016 // Atmosphere. 2019. V. 10. № 11. P. 689. https://doi.org/10.3390/atmos10110689

2.   Arshinov M.Yu., Belan B.D., Davydov D.К., Inoue G., Maksutov Sh.Sh., Machida Т., Fofonov A.V. Vertical distribution of greenhouse gases over Western Siberia according to long-term measurements // Opt. Atmos. Okeana. 2009. V. 22. № 5. P. 457–464.

3.   Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V. et. al. The HITRAN2020 Molecular Spectroscopic Database // Journal of Quantitative Spectroscopy and Radiative Transfer. 2022. V. 277. P. 107949. https://doi.org/10.1016/j.jqsrt.2021.107949

4.   Mao J., Ramanathan A., Abshire J. et al. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar // Atmospheric Measurement Techniques. 2018. V. 11. № 1. P. 127–140. https://doi.org/10.5194/amt-11-127-2018

5.   Wagner G.A., Plusquellic D.F. Multi-frequency differential absorption LIDAR system for remote sensing of CO2 and H2O near 1.6 µm // Optics Express. 2018. V. 26. № 15. P. 19420–19434. https://doi.org/10.1364/OE.26.019420

6.   Wagner G.A., Plusquellic D.F. Ground-based, integrated path differential absorption LIDAR measurement of CO4, CH2, and H2O near 1.6  µm // Appl. Opt. 2016. V. 55. Iss. 23. P. 6292. https://doi.org/10.1364/AO.55.006292

7.    Matvienko G.G., Sukhanov A.Y. Application of neural networks for retrieval of the CO2 concentration at aerospace Sensing by IPDA-DIAL lidar // Remote Sensing. 2019. V. 11. № 6. P. 659. https://doi.org/10.3390/rs11060659

8.   Davis Z.Y.W., Frieß U., Strawbridge K.B. et.al. Validation of MAX-DOAS retrievals of aerosol extinction, SO2, and NO2 through comparison with lidar, sun photometer, active DOAS, and aircraft measurements in the Athabasca oil sands region // Atmospheric Measurement Techniques. 2020. V. 13. № 3. P. 1129–1155. https://doi.org/10.5194/amt-13-1129-2020

9.   Platt U., Perner D., Paetz H.W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption // Journal of Geophysical Research. 1979. V. 84. Iss. C10. P. 6329–6335. https://doi.org/10.1029/JC084iC10p06329

10. Kharchenko О.V. Methodology for planning and conducting lidar measurements of profiles of meteorological parameters of the atmosphere // Opt. Atmos. Okeana. 2012. V. 25. № 6. P. 523–528.

11.  Romanovskii O.A., Kharchenko O.V., Yakovlev S.V. Methodological aspects of lidar ranging of trace gases in the atmosphere by differential absorption // Journal of Applied Spectroscopy. 2012. V. 79. № 5. P. 793–800. https://doi.org/10.1007/s10812-012-9673-4

12.  Matvienko G.G., Romanovskiĭ O.A., Sadovnikov S.A., Sukhanov A.Ya., Kharchenko O.V., Yakovlev S.V. Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere // Journal of Optical Technology. 2017. V. 84. № 6. P. 408–414. https://doi.org/10.1364/JOT.84.000408

13.  Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Estimation of the efficiency of laser excitation of phosphorus oxide molecules // Atmospheric and Oceanic Optics. 2021. V. 34. № 4. P. 302–312. https://doi.org/10.1134/S1024856021040047

14.  Matvienko G.G., Marichev V.N., Bobrovnikov S.M., Yakovlev S.V., Chistilin A.Yu., Sautkin V.A. Mesostratospheric lidar for the heliogeophysical complex // Solar-Terrestrial Physics. 2020. V. 6. № 2. P. 74–83. https://doi.org/10.12737/stp-62202007

15.  Razenkov I.A., Nadeev A.I., Zaitsev N.G., Gordeev E.V. Turbulent UV Lidar BSE-5 // Atmospheric and Oceanic Optics. 2020. V. 33. № 4. P. 406–414. https://doi.org/10.1134/S1024856020040107

16.  Marichev V.N., Bochkovsky D.A. Lidar complex of a small station for high — altitude sounding of the atmosphere of the IAO SB RAS // Opt. Atmos. Okeana. 2020. V. 33. № 5. P. 399–406. https://doi.org/10.15372/AOO20200510

17.  Dolgii S.I., Nevzorov A.A., Nevzorov A.V., Makeev A.P., Romanovskii O.A., Kharchenko O.V. Lidar complex for measurement of vertical ozone distribution in the upper troposphere-stratosphere // Atmospheric and Oceanic Optics. 2018. V. 31. № 6. P. 702–708. https://doi.org/10.1134/S1024856018060209

18. Matvienko G.G., Babushkin P.A., Bobrovnikov S.M., Borovoi A.G., Bochkovskii D.A., Galileiskii V.P., Grishin A.I., Dolgii S.I., Elizarov A.I., Kokarev D.V., Konoshonkin A.V., Kryuchkov A.V., Kustova N.V., Nevzorov A.V., Marichev V.N., Morozov A.M., Oshlakov V.K., Romanovskii O.A., Sukhanov A.Ya., Trifonov D.A., Yakovlev S.V., Sadovnikov S.A., Nevzorov A.A., Kharchenko O.V. Laser and optical sounding of the atmosphere // Atmospheric and Oceanic Optics. 2020. V. 33. № 1. P. 51–68. https://doi.org/10.1134/S102485602001008X

19.  Halldórsson T., Langerholc J. Geometrical form factors for the lidar function // Appl. Opt. 1978. V. 17. P. 240–244. https://doi.org/10.1364/AO.17.000240

20. Mao F., Gong W., Li J. Geometrical form factor calculation using Monte Carlo integration for lidar // Optics & Laser Technology. 2012. V. 44. № 4. P. 907–912. https://doi.org/10.1016/j.optlastec.2011.10.024

21.  Wojtanowski J. Cancelling lidar echo signal 1/range2 dependence and geometrical form factor shaping by the application of freeform optics // Optics & Laser Technology. 2020. V. 125. P. 106011. https://doi.org/10.1016/j.optlastec.2019.106011

22. Zhao Y., Wang X., Cai Y.  et al. Measurements of atmospheric aerosol hygroscopic growth based on multi-channel Raman–Mie lidar // Atmospheric Environment. 2021. V. 246. P. 118076. https://doi.org/10.1016/j.atmosenv.2020.118076

23. Razenkov I.A. Analysis of technical solutions in the design of a turbulent lidar // Opt. Atmos. Okeana. 2022. V. 35. № 9. P. 766–776. https://doi.org/10.15372/AOO20220910

24. Cadiou E., Mammez D., Dherbecourt J.B. et al. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source // Optics letters. 2017. V. 42. №. 20. P. 4044–4047. https://doi.org/10.1364/OL.42.004044

25. Electronic resource URL: https://www.python.org/ (“Welcome to Python.org”).

26. Electronic resource URL: https://learn.microsoft.com/ru-ru/dotnet/csharp/ (“C# documentation”).

27. Paschotta R. Field guide to lasers. Bellingham, WA: SPIE Press, 2008. 152 p.

28. Edwards P.D. GENLN2: A general line-by-line atmospheric transmittance and radiance model // NCAR Technical Note. 1992. 147 p.

29. US standard atmosphere. National Oceanic and Atmospheric Administration, 1976. 227 p.

30. Penndorf R. Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 µ and their application to atmospheric optics // JOSA. 1957. V. 47. № 2. P. 176–182. https://doi.org/10.1364/JOSA.47.000176

31.  Electronic resource URL: https://solarlaser.com/ (“Solar LS”).

32.      Electronic resource URL: https://lop.iao.ru/EN/ (“Laboratory of Atmospheric Composition Climatology IAO SB RAS”).