DOI: 10.17586/1023-5086-2024-91-11-3-11
УДК: 535.137
Calculation of charge transfer plasmons in one-dimensional and two-dimensional periodic systems
Full text on elibrary.ru
Фёдоров А.С., Еремкин Е.В., Герасимов В.С. Расчет плазмонов с переносом заряда в одномерных и двумерных периодических системах // Оптический журнал. 2024. Т. 91. № 11. С. 3–11. http://doi.org/10.17586/1023-5086-2024-91-11-3-11
Fedorov A.S., Eremkin E.V., Gerasimov V.S. Calculation of charge transfer plasmons in one-dimensional and two-dimensional periodic systems [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 11. P. 3–11. http://doi.org/10.17586/1023-5086-2024-91-11-3-11
The subject of the study. One-dimensional and two-dimensional periodic structures of nanoparticles connected by conducting bridges (linkers). Aim of study. Creation of a model for calculating the properties of charge-transfer plasmons in one-dimensional and two-dimensional periodic systems of metal nanoparticles. Method. A hybrid quantum-classical approach modified for periodic systems. Main results. The modified model is applied to two systems of periodic metal nanoparticles connected by conducting bridges. It has been demonstrated that these plasmon frequencies lie in the infrared range. Practical significance. The proposed hybrid model makes it possible to calculate the plasmon properties of complex periodic systems of bound metal nanoparticles for use in various detectors.
plasmons, charge-transfer plasmons, nanoparticles, periodic system, conducting linkers
Acknowledgements:this study was supported by the Russian Science Foundation, Agreement № 23-12-20007, and the Government of the Krasnoyarsk Territory and the Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, Agreement № 256
OCIS codes: 250.5403, 160.4236
References:1. Cheng Y., Sun M. Unified treatment for photoluminescence and scattering of coupled metallic nanostructures: I. Two-body system // New J. Phys. 2022. V. 24. № 3. P. 033026. https://doi.org/10.1088/1367-2630/ ac57e9
2. Cao Y., Sun M. Tip-enhanced Raman spectroscopy // Rev. in Phys. 2022. V. 8. P. 100067. https://doi.org/10.1016/j.revip.2022.100067
3. Wen F., Zhang Y., Gottheim S., et al. Charge transfer plasmons: Optical frequency conductances and tunable infrared resonances // ACS Nano. 2015. V. 9. № 6. P. 6428–6435. https://doi.org/10.1021/acsnano.5b02087
4. Koya A.N., Lin J. Charge transfer plasmons: Recent theoretical and experimental developments // Appl. Phys. Rev. 2017. V. 4. № 2. P. 021104. https://doi.org/10.1063/1.4982890
5. Zhu W., Esteban R., Borisov A.G., et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps // Nature Commun. 2016. V. 7. № 1. P. 11495. https://doi.org/10.1038/ncomms11495
6. Savage K.J., Hawkeye M.M., Esteban R., et al. Revealing the quantum regime in tunnelling plasmonics // Nature. 2012. V. 491. № 7425. P. 574–577. https://doi.org/10.1038/nature11653
7. Scholl J.A., García-Etxarri A., Koh A.L., et al. Observation of quantum tunneling between two plasmonic nanoparticles // Nano Lett. 2013. V. 13. № 2. P. 564–569. https://doi.org/10.1021/nl304078v
8. Wiener A., Duan H., Bosman M., et al. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms // ACS Nano. 2013. V. 7. № 7. P. 6287–6296. https://doi.org/10.1021/nn402323t
9. Gu J., Singh R., Liu X., et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials // Nature Commun. 2012. V. 3. № 1. P. 1151. https://doi.org/10.1038/ncomms2153
10. Large N., Abb M., Aizpurua J., et al. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches // Nano Lett. 2010. V. 10. № 5. P. 1741–1746. https://doi.org/10.1021/nl1001636
11. Pérez-González O., Zabala N., Borisov A.G., et al. Optical spectroscopy of conductive junctions in plasmonic cavities // Nano Lett. 2010. V. 10. № 8. P. 3090–3095. https://doi.org/10.1021/nl1017173
12. Koya A.N., Lin J. Bonding and charge transfer plasmons of conductively bridged nanoparticles: The effects of junction conductance and nanoparticle morphology // J. Appl. Phys. 2016. V. 120. № 9. P. 093105. https://doi.org/10.1063/1.4962133
13. Li L., Wang Z., Lu Y., et al. DNA-assisted synthesis of ortho-nanodimer with sub-nanoscale controllable gap for SERS application // Biosensors and Bioelectronics. 2021. V. 172. P. 112769. https://doi.org/10.1016/ j.bios.2020.112769
14. Rossi T.P., Zugarramurdi A., Puska M.J., et al. Quantized evution of the plasmonic response in a stretched nanorod // Phys. Rev. Lett. 2015. V. 115. № 23. P. 236804. https://doi.org/10.1103/PhysRevLett.115.236804
15. Han J., Wang M., Hu Y., et al. Conducting polymernoble metal nanoparticle hybrids: Synthesis mechanism application // Progress in Polymer Sci. 2017. V. 70. P. 52–91. https://doi.org/10.1016/j.progpolymsci. 2017.04.002
16. Liao J., Blok S., van der Molen S.J., et al. Ordered nanoparticle arrays interconnected by molecular linkers: Electronic and optoelectronic properties // Chem. Soc. Rev. 2015. V. 44. № 4. P. 999–1014. https://doi.org/10.1039/C4CS00225C
17. Reeler N.E.A., Lerstrup K.A., Somerville W., et al. Gold nanoparticles assembled with dithiocarbamateanchored molecular wires // Sci. Rep. 2015. V. 5. № 1. P. 15273. https://doi.org/10.1038/srep15273
18. Fontana L., Bassetti M., Battocchio C., et al. Synthesis of gold and silver nanoparticles functionalized with organic dithiols // Colloids and Surfaces A: Physicochem. and Eng. Aspects. 2017. V. 532. P. 282–289. https://doi.org/10.1016/j.colsurfa.2017.05.005
19. Fratoddi I., Matassa R., Fontana L., et al. Electronic properties of a functionalized noble metal nanoparticles covalent network // J. Phys. Chem. C. 2017. V. 121. № 33. P. 18110–18119. https://doi.org/10.1021/acs. jpcc.7b07176
20. Jiang N., Zhu T., Hu Y. Competitive aptasensor with gold nanoparticle dimers and magnetite nanoparticles for SERS-based determination of thrombin // Microchimica Acta. 2019. V. 186. № 12. P. 747. https://doi.org/10.1007/s00604-019-3787-9
21. Willets K.A., Wilson A.J., Sundaresan V., et al. Superresolution imaging and plasmonics // Chem. Rev. 2017. V. 117. № 11. P. 7538–7582. https://doi.org/10.1021/ acs. chemrev.6b00547
22. Linic S., Aslam U., Boerigter C., et al. Photochemical transformations on plasmonic metal nanoparticles // Nature Materials. 2015. V. 14. № 6. P. 567–576. https:// doi.org/10.1038/nmat4281.
23. Parveen F., Sannakki B., Mandke M.V., et al. Copper nanoparticles: Synthesis methods and its light harvesting performance // Solar Energy Materials and Solar Cells. 2016. V. 144. P. 371–382. https://doi. org/10.1016/j.solmat.2015.08.033
24. Tantiwanichapan K., Wang X., Durmaz H. Graphene terahertz plasmons: A combined transmission spectroscopy and raman microscopy study // ACS Photonics. 2017. V. 4. № 8. P. 2011–2017. https://doi.org/ 10.1021/acsphotonics.7b00384
25. Ahmadivand A., Gerislioglu B., Sinha R., et al. Excitation of terahertz charge transfer plasmons in metallic fractal structures // J. Infrared, Millimeter, and Terahertz Waves. 2017. V. 38. P. 992–1003. https://doi.org/10.1007/s10762-017-0400-3
26. Fedorov A.S., Visotin M.A., Eremkin E.V., et al. Charge-transfer plasmons of complex nanoparticle arrays connected by conductive molecular bridges // Phys. Chem. Chem. Phys. 2022. V. 24. № 32. P. 19531–19540. https://doi.org/10.1039/D2CP01811J
27. Fedorov A.S., Krasnov P.O., Visotin M.A., et al. Thermoelectric and plasmonic properties of metal nanoparticles linked by conductive molecular bridges // Physica Status Solidi (B) Basic Res. 2020. V. 257. № 12. P. 2000249. https://doi.org/10.1002/pssb.202000249
28. Fedorov A., Visotin M., Gerasimov V., et al. Charge transfer plasmons in the arrays of nanoparticles connected by conductive linkers // J. Chem. Phys. 2021. V. 154. № 8. P. 084123. https://doi.org/10.1063/5.0040128
29. Olmon R.L., Slovick B., Johnson T.W., et al. Optical dielectric function of gold // Phys. Rev. B. 2012. V. 86. № 23. Р. 235147. https://doi.org/10.1103/PhysRevB.86.235147