DOI: 10.17586/1023-5086-2024-91-11-34-42
УДК: 535.326, 535.317.9, 681.7.067.222.2
Ultra-high-aperture dual-range gradient index-diffractive infrared objective
Full text on elibrary.ru
Грейсух Г.И., Левин И.А., Ежов Е.Г. Сверхсветосильный двухдиапазонный градиентно-дифракционный инфракрасный объектив // Оптический журнал. 2024. Т. 91. № 11. С. 34–42. http://doi.org/10.17586/1023-5086-2024-91-11-34-42
Greisukh G.I., Levin I.A., Ezhov E.G. Ultra-high-aperture dual-range gradient index-diffractive infrared objective [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 11. P. 34–42. http://doi.org/10.17586/1023-5086-2024-91-11-34-42
Subject of the study. A coaxially laminated optical material for a radial gradient index lens of an ultra-high-aperture infrared objective, as well as a dual-band infrared objective with such lens and a diffractive optical element. Purpose of the study. Modeling and calculation of an optical system with a coaxially laminated radial gradient lens. Demonstration of the potential capabilities of an ultra-high-aperture dual-band infrared lens consisting of two uniform and one radial-gradient lenses. The research method. Theoretical analysis, computer modeling and optimization using the ZEMAX optical design program. The main results. It is shown that the proposed infinitely thin model of a coaxially laminated radial gradient lens, which has the same optical power and longitudinal chromatism as its thick prototype, together with thin homogeneous lenses separated by air gaps, can be used as the initial design of the optical system being developed. Moreover, if the distribution of the a gradient lens refractive index is known, then the best combination of homogeneous lenses optical materials and the optical powers ratio of all elements of the circuit can be obtained from the conditions of achromatization, superachromatization or superchromatization by repeatedly solving the corresponding system of equations. The optical design, design parameters and optical characteristics of the calculated dual-band (3.5–5 and 8–11.9 μm) triplet, consisting of two uniform and one gradient lenses, are presented, demonstrating the effectiveness of the proposed approach and the possibility of achieving high optical characteristics for lenses of this type. Practical significance. The results of this study open up the possibility of creating, on the basis of the already developed special series of chalcogenide glasses, radial gradient lenses with such refractive index distributions that allow them to be used to achieve high optical performance in simple infrared objective.
composite gradient index material, coaxial laminated radial gradient index lens and its model, diffractive optical element, ultra-high-aperture dual-range gradient index-diffractive infrared objective
OCIS codes: 110.2760, 110.3080, 220.3620
References:1. Tissot J.L., Trouilleau C., Fieque B., et al. Uncooled microbolometer detector: Recent developments at Ulis // Opto-Electron. Rev. 2006. V. 14. № 1. P. 25–32. https://doi.org/10.2478/s11772-006-0004-2
2. Keskin S., Akin T. The first fabricated dual-band uncooled infrared microbolometer detector with a tunable micro-mirror structure // Proc. SPIE. 2012. V. 8353. Р. 83531 (11 p.). https://doi.org/10.1117/ 12.964551
3. Smith E.M., Panjwani D., Ginn J., et al. Dual band sensitivity enhancements of a VOx microbolometer array using a patterned gold black absorber // Appl. Opt. 2016. V. 55. № 8. P. 2071–2078. https://doi.org/10.1364/AO.55.002071
4. Alaruri S.D. f/1.6 diffraction-limited air-spaced Cooke triplet photographic lens designs for MWIR and LWIR imaging applications: Geometrical optics performance comparison between Ge–ZnSe–Ge and Si–Ge–Si triplet designs using Zemax // Optik. 2016. V. 127. Iss. 1. P. 254–258. https://doi.org/10.1016/j.ijleo.2015.10.085
5. Greisukh G.I., Levin I.A, Ezhov E.G. Design of ultrahigh-aperture dual-range athermal infrared objectives // Photonics. 2022. V. 9. № 10. P. 742. https://doi.org/10.3390/photonics9100742
6. Gibson D., Bayya S., Nguyen V., et al. IR GRIN optics for imaging // Proc. SPIE. 2016. V. 9822. P. 98220R (9 p.). https://doi.org/10.1117/12.2224094
7. Gibson D., Bayya S., Nguyen V., et al. GRIN optics for multispectral infrared imaging // Proc. SPIE. 2015. V. 9451. P. 94511P (7 p.). https://doi.org/10.1117/ 12.2177136
8. Грейсух Г.И., Левин И.А., Ежов Е.Г. Сверхсветосильный тепловизионный триплет с градиентной линзой: этапы моделирования композитного градиентного материала и потенциальные возможности оптической схемы // Оптический журнал. 2024. Т. 91. № 3. С. 5–13. http://doi.org/10.17586/1023-5086-2024-91-03-5-13
Greisukh G.I., Levin I.A., Ezhov E.G. Ultra-high-aperture infrared triplet with grin lens: Modeling stages of composite gradient-index material and potential possibilities of the optical scheme // J. Opt. Technol. 2024. V. 91. № 3. P. 00–00. https://doi.org/10.1364/JOT.91.000000
9. Грейсух Г.И., Левин И.А., Ежов Е.Г. Моделирование ламинированной радиально-градиентной линзы; расчет и достижимые характеристики двухдиапазонного инфракрасного триплета с такой линзой // Оптический журнал. 2024. Т. 91. № 10. С. 34–42. http://doi.org/10.17586/1023-5086-2024-91-10-34-42
Greisukh G.I., Levin I.A., Ezhov E.G. Modeling of a radial laminated GRIN lens; design and achievable performances of a dual-band infrared triplet with such lens // J. Opt. Technol. 2024. V. 91. № 10. P. 00–00. https://doi.org/10.1364/JOT.91.000000
10. Электронный ресурс URL: https://www.ansys.com/products/optics/ansys-zemax-opticstudio (Ansys Zemax Optic: Studio Comprehensive Optical Design Software). Electronic resource URL: https://www.ansys.com/ products/optics/ansys-zemax-opticstudio (Ansys Zemax Optic: Studio Comprehensive Optical Design Software).
11. Beadie G., Stover E., Gibson D. Temperature-dependent dispersion fitting for a recent infrared glass catalog // Proc. SPIE. 2019. V. 10998. P. 1099804 (6 p.). https://doi.org/10.1117/12.2518494
12. Bayya S., Gibson D., Nuygen V., et al. Design and fabrication of multispectral optics using expanded glass map // Proc. SPIE. 2015. V. 9451. P. 94511N (7 p.). https://doi.org/10.1117/12.2177289
13. Gibson D., Bayya S., Nguyen V.Q., et al. Diffusionbased gradient index optics for infrared imaging // Opt. Eng. 2020. V. 59. № 11. Р. 112604. https://doi.org/10.1117/1.OE.59.11.112604
14. Грейсух Г.И., Ежов Е.Г., Степанов С.А. Сравнительный анализ хроматизма дифракционных и рефракционных линз // Компьютерная оптика. М.: МЦНТИ, 2005. Вып. 28. С. 60–65.
Greisukh G.I., Ezhov E.G., Stepanov S.A. Comparative analysis of chromatism of diffractive and refractive lenses [in Russian] // Computer Opt. Moscow: ICSTI, 2005. Iss. 28. P. 60–65.
15. Greisukh G.I., Levin I.A., Zakharov O.A. Diffractive elements in thermal imaging monofocal dual-band objectives: Design and technological aspects // Computer Opt. 2024. V. 48. № 2. P. 210–216. https://doi.org/10.18287/2412-6179-CO-1336
16. Электронный ресурс URL: https://www.scd.co.il/ wp-content/uploads/2019/07/Bird640-17-ceramic_ brochure_v3_PRINT.pdf (SemiConductor Devices). Electronic resource URL: https://www.scd.co.il/ wp-content/uploads/2019/07/Bird640-17-ceramic_ brochure_v3_PRINT.pdf (SemiConductor Devices).
17. Электронный ресурс URL: https://astrohn.ru/ product/astrohn-64017-2/ (ASTRON-64017-2. Microbolometer Matrix Detector.).
Electronic resource URL: https://astrohn.ru/product/ astrohn-64017-2/ (ASTRON-64017-2. Microbolometer Matrix Detector.).