DOI: 10.17586/1023-5086-2024-91-12-13-23
УДК: 681.787.7
Optoinformation method of subdiffraction angular measurements
Full text on elibrary.ru
Борейшо А.С., Савин А.В., Страхов С.Ю., Ершов А.Г., Суханов Г.А., Джгамадзе Г.Т., Сотникова Н.В. Оптоинформационный метод субдифракционных угловых измерений // Оптический журнал. 2024. Т. 91. № 12. С. 13–23. http://doi.org/10.17586/1023-5086-2024-91-12-13-23
Boreisho A.S., Savin A.V., Strakhov S.Yu., Ershov A.G., Sukhanov G.A., Jgamadze G.T., Sotnikova N.V. Optoinformation method of subdiffraction angular measurements [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 13–23. http://doi.org/10.17586/1023-5086-2024-91-12-13-23
Subject of the study. Optical-information method for angle measuring between a laser beam and the normal to a flat surface with an error of the order of 1% of the diffraction limit or less. Purpose of the study. Studying of the metrological properties of the optical-information method of sub-diffraction angular measurements and their dependence on the volume of processed images, on spatial resolution, sampling error as well as the signal-to-noise ratio. Metod of investigation. Simulation of interference patterns; mock-up of the processing algorithm building; numerical and analytical solving of equations for angular deviation of the laser beam. Main results. New method for measuring the angular position of a laser beam relative to the normal to a flat surface have been proposed in the paper, which, in principle, provides an error of about 1/10–1/100 of the diffraction limit. The method is based on the specially developed algorithm for mathematical processing of an array of two-dimensional interference patterns created by a Michelson interferometer with a moving retro-reflector. This optical design does not require large longitudinal dimensions, like in the autocollimation method, and is, in principle, insensitive to vibration. The proposed method is essentially an optical information method, since its implementation requires huge calculations based on the mathematical model of the measurement process. The optical circuit and data processing algorithm are described. The results of numerical simulation of the measurement process are presented. It is shown that the algorithm works well even for highly noisy data and gives much better accuracy even with low spatial resolution of images. The effect is achieved by increasing the number of processed interference patterns and correspondingly reducing the bandwidth of the measuring system. Practical significance. The relationships obtained in the work make it possible to develop a practical implementation of a sub-diffraction angle meter and the corresponding experimental research methodology.
optical-information measurements, Michelson interferometer, diffraction limit, least squares method, signal-to-noise ratio
Acknowledgements:this study was financially supported by the Ministry of Science and Higher Education of Russian Federation during implementation of the project “Development and research of methods for managing groups of autonomous unmanned aerial vehicles based on advanced information support systems and interaction between individual devices in the group”, № FZWF-2024-0002
OCIS codes: 140.3295
References: 1. Савин А.В., Страхов С.Ю., Дружинин С.Л. Неустойчивые резонаторы мощных химических кислородно-йодных лазеров // Квантовая электроника. 2006. Т. 9. № 36. С. 867–873. http://doi.org/10.1070/ QE2006v036n09ABEH013407
Savin A.V., Strakhov S.Yu., Druzhinin S.L. Unstable resonators of high-power chemical oxygen-iodine lasers // Quantum Electronics. 2006. T. 9. № 36. P. 867–873. https://doi.org/ 10.1070/ QE2006v036n09ABEH013407
2. Страхов С.Ю., Савин А.В., Сотникова Н.В. Оценка влияния искажений формы зеркал на оптическое качество излучения в неустойчивых резонаторах // Оптический журнал. 2023. Т. 90. № 12. С. 24–34. https://doi.org/10.17586/1023-5086-2023-90-12-24-34
Strakhov S.Yu., Savin A.V., Sotnikova N.V. Evaluation of the effect of mirror shape distortions on the optical quality of radiation in unstable resonators [in Russian] // Journal of Optical Technology. 2023. T. 90. № 12. P. 730–736. https://doi.org/10.1364/JOT.90.000730
3. Барышников Н.В. Разработка методов и оптикоэлектронной аппаратуры автоюстировки бортовой локационной станции с мощным источником лазерного излучения // Диссертация на соискание учёной степени доктора технических наук. М.: МГТУ им. Баумана, 2012. 340 с.
Baryshnikov N.V. Development of methods and optical-electronic equipment for auto-adjustment of an onboard location station with a powerful source of laser radiation // Dissertation for the degree of Doctor of Technical Sciences. M.: MSTU im. Bauman, 2012. 340 p.
4. Копытов В.В., Лизунов В.Д., Весельев В.М., Набока Т.М. Интерферометр для измерения углов // Авторское свидетельство СССР № SU 1 756 757 A1. 1992.
Kopytov V.V., Lizunov V.D., Veselyev V.M., Naboka T.M. Interferometer for measuring angles // Copyright certificate of the USSR № SU 1 756 757 A1. 1992.
5. Sommargren Gary E. Angle measuring interferometer // US Patent US4746216. Applicants: Zygo Corporation. 24.05.1988. Priority 06845926 28.03.1986 US
6. Yuki Shimizu, Liang-Chia Chen, Dae Wook Kim, Xiuguo Chen, Xinghui Li, Hiraku Matsukuma. An insight into optical metrology in manufacturing // Meas. Sci. Technol. 2021. V. 32. P. 042003 (47 p). https://doi.org/ 10.1088/1361-6501/abc578