DOI: 10.17586/1023-5086-2024-91-12-24-34
УДК: 621.373.826
Analysis of α-factor of 1.55 μm-range vertical-cavity surface-emitting lasers based on InGaAs/InAlGaAs quantum wells
Full text on elibrary.ru
Ковач Я.Н., Блохин С.А., Бобров М.А., Блохин А.А., Малеев Н.А., Бабичев А.В., Карачинский Л.Я., Новиков И.И., Гладышев А.Г., Колодезный Е.С., Воропаев К.О., Устинов В.М., Егоров А.Ю. Анализ α-фактора вертикально-излучающих лазеров спектрального диапазона 1,55 мкм на основе квантовых ям InGaAs/InAlGaAs // Оптический журнал. 2024. Т. 91. № 12. С. 24–34. http://doi.org/10.17586/1023-5086-2024-91-12-24-34
Kovach Ya.N., Blokhin S.A., Bobrov M.A., Blokhin A.A., Maleev N.A., Babichev A.V., Karachinsky L.Ya., Novikov I.I., Gladyshev A.G., Kolodeznyi E.S., Voropaev K.O., Ustinov V.M., Egorov A.Yu. Analysis of α-factor of 1.55 μm-range vertical-cavity surface-emitting lasers based on InGaAs/InAlGaAs quantum wells [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 24–34. http://doi.org/10.17586/1023-5086-2024-91-12-24-34
Subject of study. Semiconductor vertical-cavity surface-emitting lasers, fabricated using a combined wafer-fusion and molecular beam epitaxy technique. Aim of study. Estimation of the α-factor values of the vertical-cavity surface-emitting lasers under study. Method. Estimations of the α-factor were done by using the direct measurements of the laser emission linewidth by scanning Fabry–Perot interferometer and based on the results of small-signal frequency analysis and determination of the shift of the resonant wavelength in the spectra of spontaneous emission when the concentration of charge carriers changes. Main results. An increase in the inverse population factor or charge carrier lifetime leads to a decrease of the α-factor for wafer-fused vertical-cavity surface-emitting lasers. For, the values of the α-factor of 3–4.5 for the studied lasers was obtained, depending on the photon lifetime. Practical significance. The obtained results make it possible to relate the photon lifetime in the laser cavity with the α-factor of 1.55 μm vertical-cavity surface-emitting lasers, which is important for the development of gas sensors as well as high-speed optical transceivers based on such lasers.
semiconductor vertical-cavity surface-emitting lasers, wafer-fusion technology, laser emission linewidth, α-factor
Acknowledgements:the small-signal frequency analysis was performed with the support of the Ministry of Science and Higher Education of the Russian Federation, Project № 2019-1442 (Project Reference Number FSER-2020-0013). Electron microscopy studies were carried out using the equipment of the Center of Multi-User Equipment "Material Science and Diagnostics for Advanced Technologies" (Ioffe Institute, St. Petersburg)
OCIS codes: 140.5960, 250.5960, 140.7260, 250.7260, 160.6000, 060.4080, 060.4510
References:1. Padullaparthi B.D., Tatum J.A., Iga K. VCSEL industry: communication and sensing. New Jersey: Wiley-IEEE Press, 2021. 352 p.
2. Babichev A., Blokhin S., Kolodeznyi E. et al. Longwavelength VCSELs: Status and prospects // Photonics. 2023. V. 10. № 3. P. 268. https://doi.org/10.3390/ photonics10030268
3. Michalzik R. VCSELs: Fundamentals, technology and applications of vertical-cavity surface-emitting lasers // Springer Series in Optical Sciences. Springer Verlag. 2013. https://doi.org/10.1007/978-3-642-24986-0_2
4. Park M.-R., Kwon O., Han W. et al. All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-μm wavelength range for CWDM band applications // IEEE Photonics Technol. Lett. 2006. V. 18. № 16. P. 1717–1719. https://doi. org/10.1109/LPT.2006.879940
5. Ohiso Y., Sato T., Shindo T. et al. 1.3-μm buried-heterostructure VCSELs with GaAs/AlGaAs metamorphic DBRs grown by MOCVD // Electron. Lett. 2020. V. 56. № 2. P. 95–97. https://doi.org/10.1049/el.2019.2958
6. Hofmann W. High-speed buried tunnel junction vertical-cavity surface-emitting lasers // IEEE Photonics J. 2010. V. 2. № 5. P. 802–815. https://doi.org/10.1109/ JPHOT.2010.2055554
7. Sirbu A., Suruceanu G., Iakovlev V. et al. Reliability of 1310 nm wafer fused VCSELs // IEEE Photonics Technol. Lett. 2013. V. 25. № 16. P. 1555–1558. https://doi. org/10.1109/LPT.2013.2271041
8. Halbritter H., Shau R., Riemenschneider F. et al. Chirp and linewidth enhancement factor of 1.55 μm VCSEL with buried tunnel junction // Electron. Lett. 2004. V. 40. № 20. P. 1266. https://doi.org/10.1049/el:20046457
9. Shau R., Halbritter H., Riemenschneider F. et al. Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction // Electron. Lett. 2003. V. 39. № 24. P. 1728. https://doi.org/10.1049/el:20031143
10. Khan N.A., Schires K., Hurtado A. et al. Measurement of temperature-dependent relaxation oscillation frequency and linewidth enhancement factor of a 1550 nm VCSEL // IEEE J. Quantum Electron. 2013. V. 49. № 11. P. 990–996. https://doi.org/10.1109/JQE.2013. 2282759
11. Ковач Я.Н., Блохин С.А., Бобров М.А. и др. Ширина линии излучения одномодовых вертикально излучающих лазеров спектрального диапазона 1,55 мкм, реализованных с помощью молекулярно-пучковой эпитаксии и технологии спекания пластин // Оптика и спектроскопия. 2023. Т. 131. № 11. С. 1486–1489. https://doi.org/10.61011/OS.2023.11.57008.5135-23
Kovach Y., Blokhin S., Bobrov M. et al. Linewidth study of MBE-grown wafer-fused single-mode 1.55 μm VCSELs // Optics and Spectroscopy. 2023. V. 131. № 11. P. 1486–1489. https://doi.org/10.61011/EOS. 2023.11.58028.5135-23.12
12. Блохин С.А., Ковач Я.Н., Бобров М.А. и др. Ширина линии излучения и α-фактор вертикально излучающих лазеров на основе квантовых ям InGaAs/ InGaAlAs спектрального диапазона 1,55 мкм // Оптика и спектроскопия. 2023. Т. 131. № 8. С. 1095–1100. https://doi.org/10.61011/OS.2023.08.56301.5369-23
Blokhin S., Kovach Y., Bobrov M. et al. Emission linewidth and α-factor of 1.55 μm-range vertical-cavity surface-emitting lasers based on InGaAs/InGaAlAs quantum wells // Optics and Spectroscopy. 2023. V. 131. № 8. P. 1095–1100. https://doi.org/10.61011/ EOS.2023.08.56301.5369-23
13. Блохин С.А., Неведомский В.Н., Бобров М.А. и др. Вертикально-излучающие лазеры спектрального диапазона 1,55 мкм, изготовленные по технологии спекания гетероструктур, выращенных методом молекулярно-пучковой эпитаксии из твердотельных источников // Физика и техника полупроводников. 2020. Т. 54. № 10. С. 1088–1096. https://doi.org/ 10.21883/FTP.2020.10.49947.9463
Blokhin S., Nevedomsky N., Bobrov M. 1.55-μm-range vertical-cavity surface-emitting lasers, manufactured by wafer fusion of heterostructures grown by solidsource molecular-beam epitaxy // Physics of semiconductor devices. 2020. V. 54. № 10. P. 1088–1096. https://doi.org/10.1134/S1063782620100048
14. Babichev A., Blokhin S., Gladyshev A. et al. Impact of device topology on the performance of high-speed 1550 nm wafer-fused VCSELs // Photonics. 2023. V. 10. № 6. P. 660. https://doi.org/10.3390/photonics10060660
15. Westbergh P., Gustavsson J., Kögel B. et al. Impact of photon lifetime on high-speed VCSEL performance // IEEE J. Sel. Top. Quantum Electron. 2011. V. 17. № 6. P. 1603–1613. https://doi.org/10.1109/JSTQE. 2011.2114642
16. Блохин С.А., Малеев Н.А., Бобров М.А. и др. Высокоскоростные полупроводниковые вертикально-излучающие лазеры для оптических систем передачи данных (Обзор) // Письма в журнал технической физики. 2018. Т. 44. № 1. С. 1–16. https://doi.org/ 10.21883/PJTF.2018.01.45428.17057
Blokhin S., Maleev N., Bobrov M. High-speed semiconductor vertical-cavity surface-emitting lasers for optical data-transmission systems (Review) // Technical Physics Letters. 2018. V. 44. № 1. P. 1–16. https://doi. org/10.1134/S1063785018010054
17. Larisch G., Tian S., Bimberg D. Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates // Opt. Express. 2020. V. 28. № 13. P. 18931. https://doi.org/10.1364/OE.391781
18. Henry C. Theory of the linewidth of semiconductor lasers // IEEE J. Quantum Electron. 1982. V. 18. № 2. P. 259–264. https://doi.org/10.1109/JQE.1982.1071522
19. Halbritter H., Riemenschneider F., Jacquet J. et al. Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL // Electron. Lett. 2004. V. 40. № 4. P. 242. https://doi.org/10.1049/ el:20040173
20. Diode lasers and photonic integrated circuits / Ed. Coldren L.A., Corzine S.W. New York: Wiley, 1995. P. 714.
21. Блохин С.А., Бобров М.А., Блохин А.А. и др. Анализ внутренних оптических потерь вертикально-излучающего лазера спектрального диапазона 1,55 мкм, сформированного методом спекания пластин // Оптика и спектроскопия. 2019. Т. 127. № 1. С. 145–149. https://doi.org/10.21883/OS.2019.07.47941.296-18
Blokhin S., Bobrov M., Blokhin А. et al. Analysis of the internal optical losses of the vertical-cavity surfaceemitting laser of the spectral range of 1.55 μm formed by a plate sintering technique // Optics and Spectroscopy. 2019. V. 127. № 1. P. 145–149. https://doi. org/10.1134/S0030400X1907004X
22. Blokhin S., Babichev A., Gladyshev A. et al. High power single mode 1300-nm superlattice based VCSEL: Impact of the buried tunnel junction diameter on performance // IEEE J. Quantum Electron. 2022. V. 58. № 2. P. 1–15. https://doi.org/10.1109/JQE.2022.3141418
23. Stubkjaer K., Suematsu Y., Asada M. et al. Measurements of refractive-index variation with free carrier density and temperature for 1.6 μm GaInAsP/InP lasers // Electron. Lett. 1980. V. 16. № 23. P. 895. https:// doi.org/10.1049/el:19800638
24. Kishino K., Aoki S., Suematsu Y. Wavelength variation of 1.6 μm wavelength buried heterostructure GaInAsP/InP lasers due to direct modulation // IEEE J. Quantum Electron. 1982. V. 18. № 3. P. 343–351. https://doi.org/10.1109/JQE.1982.1071553
25. Блохин С.А., Бабичев А.В., Карачинский Л.Я. и др. Оптический передатчик спектрального диапазона 1,55 мкм на основе вертикально-излучающего лазера // Оптический журнал. 2022. Т. 89. № 11. C. 61–69. https://doi.org/10.17586/1023-5086-2022-89-11-61-69
Blokhin, S.A., Babichev, A.V., Karachinsky, L.Y. 1.55-μm range optical transmitter based on a vertical-cavity surface-emitting laser // Journal of Optical Technology. 2022. V. 89. № 11. P. 681–686. https://doi.org/ 10.1364/JOT.89.000681
26. Колодезный Е.С., Рочас С.С., Курочкин А.С. и др. Оптическое усиление гетероструктур с множественными квантовыми ямами в диапазоне длин волн 1550 нм и предельные частоты модуляции вертикально-излучающих лазеров на их основе // Оптика и спектроскопия. 2018. Т. 125. № 2. С. 229–233. https://doi.org/10.21883/OS.2018.08.46365.95-18
Kolodeznyi E.S., Rochas S.S., Kurochkin A.S. Optical gain of 1550-nm range multiple-quantum-well heterostructures and limiting modulation frequencies of vertical-cavity surface-emitting lasers based on them // Optics and Spectroscopy. 2018. V. 125. № 2. P. 229– 233. https://doi.org/10.1134/S0030400X18080143