DOI: 10.17586/1023-5086-2024-91-12-3-12
УДК: 621.383.52
High-power p-i-n photodiode of 1300–1550 nm spectral range with a responsivity of 0.5 A/W at an optical radiation power of 50 mW
Full text on elibrary.ru
Копытов П.Е., Рочас С.С., Колодезный Е.С., Новиков И.И., Воропаев К.О. Мощный p-i-n фотодиод спектрального диапазона 1300–1550 нм с токовой чувствительностью 0,5 А/Вт при входной мощности оптического излучения 50 мВт // Оптический журнал. 2024. Т. 91. № 12. С. 3–12. http://doi.org/10.17586/1023-5086-2024-91-12-3-12
Kopytov P.E., Rochas S.S. Kolodeznyi E.S., Novikov I.I., Voropaev K.O. Highpower p-i-n photodiode of 1300–1550 nm spectral range with a sensitivity of 0.5 A/W at an optical radiation power of 50 mW [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 3–12. http://doi.org/10.17586/1023-5086-2024-91-12-3-12
Subject of study. In this paper, p-i-n photodiode of 1300–1550 nm spectral range with 150 μm entrance window diameter was studied. The purpose of work. Optimizing the design of a 1300–1550 nm spectral range photodiode to increase sensitivity at increased values of at an optical radiation power of 50 mW. Method. Investigation of the static characteristics of the photodiode using the MPI TS150 probe station with Keithley 2611B source measure unit. Numerical calculation model of static characteristic of a photodiode is based on solving system of differential equations with finite element and volume methods in the COMSOL Multiphysics software package. Main results. The static characteristics of a p-i-n photodiode of 1300–1550 nm spectral range are investigated and a numerical modeling of static characteristics of a p-i-n photodiode is constructed considering thermal distributions during laser radiation absorption in this paper. We propose an optimized planar design of a p-i-n photodiode with increased sensitivity at high optical powers. The sensitivity of the proposed p-i-n photodiode design is 1,02–0,50 A/W at a power range of 1–50 mW, the dark current did not exceed 15 nA at a reverse bias voltage of –3 V. Practical significance. P-i-n photodiode design developed in this work with increased sensitivity at high optical powers can be used to increase the dynamic range and efficiency of transmitting a powerful optical signal in fiber-optic lines.
p-i-n photodiode, sensitivity, numerical model, COMSOL Multiphysics, heterostructure, fiber-optic communication
Acknowledgements:OCIS codes: 230.5170, 250.0040, 040.3060
References:1. Seeds A.J., Williams K.J. Microwave photonics // Journal of Lightwave Technology. 2006. V. 24. № 12. P. 4628–4641. https://doi.org/10.1109/JLT.2006.885787
2. Малышев С.А., Чиж А.Л., Микитчук К.Б. Волоконно-оптические лазерные и фотодиодные модули СВЧ диапазона и системы радиофотоники на их основе // Тез. докл. IV Всерос. конф. «Электроника и микроэлектроника СВЧ». СПб., Россия. 01–04 июня 2015. С. 10–18.
Malyshev S.A., Chizh A.L., Mikitchuk K.B. Fiber-optic laser and photodiode modules of the SHF range and radiophotonics systems based on them [in Russian] // IV All-Russian Conf. «SHF Electronics and microelectronics» (Abstracts of Reports). Saint-Petersburg, Russia. June 01–04, 2015. P. 10–18.
3. Ridgway R.W., Dohrman C.L., Conway J.A. Microwave photonics programs at DARPA // Journal of Lightwave Technology. 2014. V. 32. № 20. P. 3428–3439. https://doi.org/10.1109/JLT.2014.2326395
4. Чистохин И.Б., Журавлев К.С. СВЧ фотодетекторы для аналоговой оптоволоконной связи // Успехи прикладной физики. 2015. Т. 3. № 1. С. 85–94.
Chistokhin I.B., Zhuravlev K.S. Microwave photodetectors for analog fiber optic communications [in Russian] // Advances in Applied Physics. 2015. V. 3. № 1. P. 85–94.
5. Taylor J.A., Datta S., Hati A., Nelson C.W., Quinlan F.J., Joshi A.M., Diddams S.A. Characterization of powerto-phase conversion in high-speed p-i-n photodiodes // IEEE Photonics Journal. 2011. V. 3. № 1. P. 140–151. https://doi.org/10.1109/JPHOT.2011.2109703
6. Kolodeznyi E.S., Novikov I.I., Gladyshev A.G., Rochas S.S., Sharipo K.D., Karachinskiy L.A., Egorov A.Yu., Bougrov V.E. Study of antireflection coatings for highspeed 1.3–1.55 μm InGaAs/InP PIN photodetector // Materials Physics and Mechanics. 2017. V. 32. № 2. P. 194–197. https://doi.org/10.18720/MPM.3222017_11
7. Rochas S.S., Kovach Y.N., Kopytov P.E., Kremleva A.V., Egorov A.Yu. Review on single-mode verticalcavity surface-emitting lasers for high-speed data transfer // Rev. Adv. Mater. Technol. 2022. V. 4. № 4. P. 1–16. https://doi.org/10.17586/2687-0568-2022-4-4-1-16
8. Chen C.-L. Elements of optoelectronics fiber optics. Chicago: IRWIN, 1996. 595 p.
9. Ghandiparsi S., Elrefaie A.F., Mayet A.S., Landolsi T., Bartolo-Perez C., Cansizoglu H., Gao Y., Mamtaz H.H., Golgir H.R., Devine E.P., Yamada T., Wang S.-Y., Islam M.S. High-speed high-efficiency photon-trapping broadband silicon p-i-n photodiodes for short-reach optical interconnects in data centers // Journal of Lightwave Technology. 2019. V. 37. № 23. P. 5748–5755. https://doi.org/10.1109/JLT.2019.2937906
10. Inoue D., Wan Y., Jung D., Norman J., Shang C., Nishhiyama N., Arai S., Gossard A.C., Bowers J.E. Lowdark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si // Applied Physics Letters. 2018. V. 113. № 9. P. 093506. https://doi.org/10.1063/1.5041908
11. Duan X., Huang Y., Ren X., Shang Y., Fan X., Hu F. Highefficiency InGaAs/InP photodetector incorporating SOIbased concentric circular subwavelength gratings // IEEE Photonics Technology Letters. 2012. V. 24. № 10. P. 863–865. https://doi.org/10.1109/LPT.2012.2189559
12. Rochas S.S., Kolodeznyi E.S., Kozyreva O.A., Voropaev K.O., Sudas D.P., Novikov I.I., Egorov A.Yu. A heterostructure for resonant-cavity GaAs p-i-n photodiode with 840–860 nm wavelength // Journal of Physics: Conference Series. 2019. V. 1236. P. 012071. https://doi.org/10.1088/1742-6596/1236/1/012071
13. Стерлинг Д.Дж. Техническое руководство по волоконной оптике // 2-е изд. Перевод с англ. Московченко А. Под ред. Кузьмина М. / М.: Лори, 2001. 181 с.
Sterling D.J. Technician’s guide to fiber optics. N.Y.: Thomson Delmar Learning, 1993. 279 p.
14. Sheng Z., Liu L., Brouckaert J., He S., Thourhout D.V. InGaAs p-i-n photodetectors integrated on silicon-oninsulator waveguides // Optics Express. 2010. V. 18. № 2. P. 1756–1761. https://doi.org/10.1364/OE.18.001756
15. Chang S.-H., Fang Y.-K., Ting S.-F., Chen S.-F., Lin C.-Y., Wu C.-W. Ultra high performance planar InGaAs p-i-n photodiodes for high speed optical fiber communication // Sensors and Actuators A: Physical. 2007. V. 133. № 1. P. 9–12. https://doi.org/10.1016/j.sna.2006.04.023
16. Курташ В.А., Егоренков А.А. Исследование оптических свойств структур фотокатода InP/InGaAs/InP // Материалы XI ежегодной научно-технической конференции молодых специалистов «Техника и технология современной фотоэлектроники». СПб., Россия. 14–15 апреля 2020. Базовый научный центр АО ЦНИИ «Электрон» [Электронный ресурс]. Режим доступа: http://www.niielectron.ru/issledovanieopticheskih-svojstv-struktur-fotokatoda-inp-ingaasinp/ (дата обращения 31.07.2023)
Kurtash V.A., Egorenkov A.A. Investigation of optical properties of InP/InGaAs/InP photocathode structures [in Russian] // XI Annual Scientific and Technical Conference of young specialists «Technics and technology of modern photoelectronics» (Abstracs of reports). Saint-Petersburg, Russia. April 14–15, 2020. Basic scientific center JCS «NRI Electron» [Electronic resource]. Access mode: http://www.niielectron.ru/ issledovanie-opticheskih-svojstv-struktur-fotokatodainp-ingaas-inp/, free. In Russian (accessed 31/07/2023)
17. Jaffe G.R., Mei S., Boyle C., Kirch J.D., Savage D.E., Botez D., Mawst L.J., Knezevic I., Lagally M.G, Eriksson M.A. Measurements of the thermal resistivity of InAlAs, InGaAs, and InAlAs/InGaAs superlattices // ACS Applied Materials & Interfaces. 2019. V. 11. № 12. P. 11970–11975. https://doi.org/10.1021/acsami. 8b17268
18. Braga O.M., Delfino C.A., Kawabata R.M.S., Pinto L.D., Vieira G.S., Pire M.P., Souza P.L., Marega E., Carlin J.A., Krishna S. Surface passivation of InGaAs/InP p-i-n photodiodes using epitaxial regrowth of InP // IEEE Sensors Journal. 2020. V. 20. № 16. P. 9234–9244. https://doi.org/10.1109/JSEN.2020.2987006
19. Yin D., He T., Han Q., Lü Q., Zhang Y., Yang X. Highresponsivity 40 Gbit/s InGaAs/InP p-i-n photodetectors integrated on silicon-on-insulator waveguide circuits // Journal of Semiconductors. 2016. V. 37. № 11. P. 114006. https://doi.org/10.1088/1674-4926/37/11/114006