ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-12-35-45

УДК: 621.373.826

Energy efficiency of optical data transmission by 1.55 μm range vertical-cavity surface-emitting laser with the active region based on InGaAs/InAlGaAs quantum wells

For Russian citation (Opticheskii Zhurnal):

Блохин С.А., Ковач Я.Н., Бобров М.А., Блохин А.А., Бабичев А.В., Карачинский Л.Я., Новиков И.И., Гладышев А.Г., Копытов П.Е., Папылев Д.С., Воропаев К.О., Егоров А.Ю., Сиконг Тиан, Дитер Бимберг. Энергоэффективность вертикально-излучающих лазеров спектрального диапазона 1,55 мкм с активной областью на основе напряжённых квантовых ям InGaAs/InAlGaAs // Оптический журнал. 2024. Т. 91. № 12. С. 35–45. http://doi.org/ 10.17586/1023-5086-2024-91-12-35-45

 

Blokhin S.A., Kovach Ya.N., Bobrov M.A., Blokhin A.A., Babichev A.V., Karachinsky L.Ya., Novikov I.I., Gladyshev A.G., Kopytov P.E., Papylev D.S., Voropaev K.O., Egorov A.Yu., Tian S.-C., Bimberg D. Energy efficiency of optical data transmission by 1.55 μm range vertical-cavity surface-emitting laser with the active region based on InGaAs/InAlGaAs quantum wells [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 35–45. http://doi.org/10.17586/1023-5086-2024-91-12-35-45

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Vertical-cavity surface-emitting lasers lasing at 1.55 μm based on strained InGaAs/InAlGaAs quantum wells, manufactured using wafer-fusion technology to bond heterostructures of distributed Bragg reflectors and an optical cavity grown by molecular beam epitaxy. Aim of study. Evaluation of the energy efficiency of information transmission using a 1.55 μm range vertical-cavity surface-emitting laser, fabricated using a combined wafer-fusion and molecular beam epitaxy techniques, in a wide range of data transfer rates of 5–30 Gbit/s. Method. Measurements of eye diagrams during large signal modulation at various data rates and estimation of the effective modulation bandwidth and dynamic laser energy efficiency from the results of small-signal analysis. Main results. It is shown that the minimum energy efficiency of 0.83 pJ/bit is achieved at a data rate of 20 Gbit/s for the lasers under study, which correlates with the results of the theoretical evaluation. A further increase in the operating current with the aim of achieving a higher data rate leads to a sharp increase in laser energy efficiency due to a slower increase in the modulation bandwidth compared to the increase in energy consumption. At the maximum data transfer rate of 30 Gbit/s, for which an open eye diagram was obtained, the laser energy efficiency increased to 1.2 pJ/bit. Practical significance. The obtained results are important for the design of efficient high-speed fiber optic transceivers based on 1.55 μm range vertical-cavity surface-emitting lasers.

Keywords:

vertical-cavity surface-emitting lasers, wafer-fusion technology, on-off keying, highspeed, energy efficiency

Acknowledgements:

the small-signal modulation measurements of the authors from ITMO University was supported by the Ministry of Science and Higher Education of the Russian Federation, Research Project № 2019-1442 (Project Reference number FSER-2020-0013). The authors from Chinese Academy of Sciences (CAS) acknowledge support by the National Key R&D Program of China (2021YFB2801000) for the large-signal modulation measurements of 1550 nm WF VCSELs. L. Karachinsky and S. Blokhin acknowledge the support of the CAS President’s international fellowship initiative grants № 2023VTA0007 and № 2023VTB0002 for the analysis of the static characteristics and energy-efficiency of VCSELs, respectively

OCIS codes: 140.5960, 250.5960, 140.7260, 250.7260, 160.6000, 060.4080, 060.4510

References:

1. Padullaparthi B.D., Tatum J.A., Iga K. VCSEL industry : communication and sensing. Piscataway: WileyIEEE Press, 2021. 352 p.
2. Cheng H.-T., Yang Y.-C., Liu T.-H. et al. Recent advances in 850 nm VCSELs for high-speed interconnects // Photonics. 2022. V. 9. № 2. P. 107. https://doi.org/ 10.3390/photonics9020107
3. Stepniak G., Lewandowski A., Kropp J.R. et al. 54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF // Electron. Lett. 2016. V. 52. № 8. P. 633–635. https://doi.org/10.1049/el.2015.4264
4. Zhang L., Chen J., Agrell E. et al. Enabling technologies for optical data center networks: Spatial division multiplexing // J. Light. Technol. 2020. V. 38. № 1. P. 18–30. https://doi.org/10.1109/JLT.2019.2941765
5. Блохин С.А., Бобров М.А., Блохин А.А. и др. Анализ внутренних оптических потерь вертикально-излучающего лазера спектрального диапазона 1.3 μm с туннельным переходом на основе слоев n+-InGaAs/ p+-InGaAs/p+-InAlGaAs // Письма в журнал технической физики. 2021. Т. 47. № 23. С. 3–7. https://doi. org/10.21883/PJTF.2021.23.51774.18938
 Blokhin S.A., Bobrov M.A., Blokhin A.A. et al. Analysis of internal optical loss of 1.3 μm vertical-cavity surface-emitting laser based on n++-InGaAs/р++- InGaAs/р++-InAlGaAs tunnel junction // Tech. Phys. Lett. 2020. V. 49. № S3. P. S173–S177. https://doi. org/10.1134/S1063785023900662
6. Блохин С.А., Бабичев А.В., Карачинскийи Л.Я. и др. Высокоскоростные одномодовые вертикально-излучающие лазеры спектрального диапазона 1550 нм // Физика и техника полупроводников. 2022. Т. 56. № 8. С. 814–823. https://doi.org/10.21883/FTP.2022. 08.53151.9890
 Blokhin S.A., Babichev A.V., Karachinsky L.Ya. et al. 1550 nm range high-speed single-mode wafer-fused vertical-cavity surface-emitting lasers // Semiconductors. 2022. V. 56. № 8. P. 598–606. https://doi.org/ 10.1134/S1063782623070072
7. Park M.-R., Kwon O.-K., Han W.-S. et al. All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-μm wavelength range for CWDM band applications // IEEE Photonics Technol. Lett. 2006. V. 18. № 16. P. 1717–1719. https:// doi.org/10.1109/LPT.2006.879940
8. Babichev A., Blokhin S., Kolodeznyi E. et al. Longwavelength VCSELs: Status and prospects // Photonics. 2023. V. 10. № 3. P. 268. https://doi.org/10.3390/ photonics10030268
9. Hofmann W. High-speed buried tunnel junction vertical-cavity surface-emitting lasers // IEEE Photonics J. 2010. V. 2. № 5. P. 802–815. https://doi.org/10.1109/ JPHOT.2010.2055554
10. Muller M., Müller M., Wolf P., Gründl T. et al. Energyefficient 1.3 μm short-cavity VCSELs for 30 Gb/s errorfree optical links // ISLC 2012 International Semiconductor Laser Conference. San Diego, USA. October 7–10, 2012. P. 1–2. https://doi.org/10.1109/ISLC.2012. 6348316
11. Spiga S., Soenen W., Andrejew A. et al. Single-mode high-speed 1.5-μm VCSELs // J. Light. Technol. 2017. V. 35. № 4. P. 727–733. https://doi.org/10.1109/JLT. 2016.2597870
12. Caliman A., Mereuta A., Suruceanu G. et al. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band // Opt. Express. 2011. V. 19. № 18. P. 16996. https://doi.org/10.1364/OE.19.016996
13. Caliman A., Mereuta A., Wolf P. et al. 25 Gbps direct modulation and 10 km data transmission with 1310 nm waveband wafer fused VCSELs // Opt. Express. 2016. V. 24. № 15. P. 16329. https://doi.org/10.1364/OE.24.016329.
14. Babichev A.V., Karachinsky L.Ya., Novikov I.I. et al. 6-mW single-mode high-speed 1550-nm wafer-fused VCSELs for DWDM application // IEEE J. Quantum Electron. 2017. V. 53. № 6. P. 1–8. https://doi.org/ 10.1109/JQE.2017.2752700.
15. Блохин С.А., Бабичев А.В., Карачинский Л.Я. и др. Оптический передатчик спектрального диапазона 1,55 мкм на основе вертикально-излучающего лазера // Оптический журнал. 2022. Т. 89. № 11. С. 61–69. https://doi.org/10.17586/1023-5086-2022-89-11-61-69
 Blokhin S.A., Babichev A.V., Karachinsky L.Ya. et al. 1.55-μm range optical transmitter based on a verticalcavity surface-emitting laser // J. Opt. Technol. 2022. V. 89. № 11. P. 681. https://doi.org/10.1364/JOT.89. 000681
16. Babichev A., Blokhin S., Gladyshev A. et al. Impact of device topology on the performance of high-speed 1550 nm wafer-fused VCSELs // Photonics. 2023. V. 10. № 6. P. 660. https://doi.org/10.3390/photonics10060660.
17. Moser P., Moser P., Lott J.A., Larisch G. et al. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs // J. Light. Technol. 2015. V. 33. № 4. P. 825–831. https://doi.org/10.1109/JLT.2014.2365237.
18. Müller M., Wolf P., Grasse C. et al. 1.3 μm short-cavity VCSELs enabling error-free transmission at 25 Gbit/s over 25 km fibre link // Electron. Lett. 2012. V. 48. № 23. P. 1487. https://doi.org/10.1049/el.2012.3355.
19. Bimberg D., Larsson A., Joel A. Faster, more frugal, greener VCSELs // Compound Semiconductor. 2014. V. 20. P. 34–39.
20. Wolf P., Li H., Caliman A. et al. Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3 μm wafer-fusion VCSELs for optical interconnects // ACS Photonics. 2017. V. 4. № 8. P. 2018–2024. https:// doi.org/10.1021/acsphotonics.7b00403
21. Ortsiefer M., Shau R., Böhm G. et al. Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency // Appl. Phys. Lett. 2000. V. 76. № 16. P. 2179. https://doi.org/ 10.1063/1.126290
22. Блохин С.А., Бобров М.А., Малеев Н.А. и др. Вертикально-излучающий лазер спектрального диапазона 1,55 мкм с туннельным переходом на основе слоев n++-InGaAs/p++-InGaAs/p++-InAlGaAs // Письма в журнал технической физики. 2020. Т. 46. № 17. С. 21–25. https://doi.org/10.21883/PJTF.2020.17.49888. 18393
 Blokhin S.A., Bobrov M.A., Maleev N.A. et al. A vertical-cavity surface-emitting laser for the 1.55-μm spectral range with tunnel junction based on n++-InGaAs/p++-InGaAs/p++-InAlGaAs Layers // Tech. Phys. Lett. 2020. V. 46. № 9. P. 854–858. https:// doi.org/10.1134/S1063785020090023
23. Блохин С.А., Бобров М.А., Блохин А.А. и др. Влияние латерального оптического ограничения на характеристики вертикально-излучающих лазеров cпектрального диапазона 1,55 мкм с заращенным туннельным переходом // Письма в журнал технической физики. 2021. Т. 47. № 22. С. 3–8. https://doi. org/10.21883/PJTF.2021.22.51717.18942
 Blokhin S.A., Bobrov M.A., Blokhin A.A. et al. Impact of transverse optical confinment on performance of 1.55 μm vertical-cavity surface-emitting lasers with a buried tunnel junction // Tech. Phys. Lett. 2022. V. 48. № 14. P. 46–50. https://doi.org/10.21883/PJTF.2021. 22.51717.18942
24. Haglund E.P., Westbergh P., Gustavsson J.S. et al. Impact of damping on high-speed large signal VCSEL dynamics // J. Light. Technol. 2014. V. 33. № 4. P. 795–801. https://doi.org/10.1109/JLT.2014.2364455
25. Blokhin S.A., Babichev A.V., Gladyshev A.G. et al. 20 Gbps 1300 nm range wafer-fused VCSELs with InGaAs/InAlGaAs superlattice-based active region // Optical Engineering. 2022. V. 61. № 9. P. 096109. https://doi.org/10.1117/1.OE.61.9.096109
26. Yu F.R., Zhang X., Leung V. Green communications and networking. Boca Raton: CRC Press, 2012. 399 p.