DOI: 10.17586/1023-5086-2024-91-12-35-45
УДК: 621.373.826
Energy efficiency of optical data transmission by 1.55 μm range vertical-cavity surface-emitting laser with the active region based on InGaAs/InAlGaAs quantum wells
Блохин С.А., Ковач Я.Н., Бобров М.А., Блохин А.А., Бабичев А.В., Карачинский Л.Я., Новиков И.И., Гладышев А.Г., Копытов П.Е., Папылев Д.С., Воропаев К.О., Егоров А.Ю., Сиконг Тиан, Дитер Бимберг. Энергоэффективность вертикально-излучающих лазеров спектрального диапазона 1,55 мкм с активной областью на основе напряжённых квантовых ям InGaAs/InAlGaAs // Оптический журнал. 2024. Т. 91. № 12. С. 35–45. http://doi.org/ 10.17586/1023-5086-2024-91-12-35-45
Blokhin S.A., Kovach Ya.N., Bobrov M.A., Blokhin A.A., Babichev A.V., Karachinsky L.Ya., Novikov I.I., Gladyshev A.G., Kopytov P.E., Papylev D.S., Voropaev K.O., Egorov A.Yu., Tian S.-C., Bimberg D. Energy efficiency of optical data transmission by 1.55 μm range vertical-cavity surface-emitting laser with the active region based on InGaAs/InAlGaAs quantum wells [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 35–45. http://doi.org/10.17586/1023-5086-2024-91-12-35-45
Subject of study. Vertical-cavity surface-emitting lasers lasing at 1.55 μm based on strained InGaAs/InAlGaAs quantum wells, manufactured using wafer-fusion technology to bond heterostructures of distributed Bragg reflectors and an optical cavity grown by molecular beam epitaxy. Aim of study. Evaluation of the energy efficiency of information transmission using a 1.55 μm range vertical-cavity surface-emitting laser, fabricated using a combined wafer-fusion and molecular beam epitaxy techniques, in a wide range of data transfer rates of 5–30 Gbit/s. Method. Measurements of eye diagrams during large signal modulation at various data rates and estimation of the effective modulation bandwidth and dynamic laser energy efficiency from the results of small-signal analysis. Main results. It is shown that the minimum energy efficiency of 0.83 pJ/bit is achieved at a data rate of 20 Gbit/s for the lasers under study, which correlates with the results of the theoretical evaluation. A further increase in the operating current with the aim of achieving a higher data rate leads to a sharp increase in laser energy efficiency due to a slower increase in the modulation bandwidth compared to the increase in energy consumption. At the maximum data transfer rate of 30 Gbit/s, for which an open eye diagram was obtained, the laser energy efficiency increased to 1.2 pJ/bit. Practical significance. The obtained results are important for the design of efficient high-speed fiber optic transceivers based on 1.55 μm range vertical-cavity surface-emitting lasers.
vertical-cavity surface-emitting lasers, wafer-fusion technology, on-off keying, highspeed, energy efficiency
Acknowledgements:the small-signal modulation measurements of the authors from ITMO University was supported by the Ministry of Science and Higher Education of the Russian Federation, Research Project № 2019-1442 (Project Reference number FSER-2020-0013). The authors from Chinese Academy of Sciences (CAS) acknowledge support by the National Key R&D Program of China (2021YFB2801000) for the large-signal modulation measurements of 1550 nm WF VCSELs. L. Karachinsky and S. Blokhin acknowledge the support of the CAS President’s international fellowship initiative grants № 2023VTA0007 and № 2023VTB0002 for the analysis of the static characteristics and energy-efficiency of VCSELs, respectively
OCIS codes: 140.5960, 250.5960, 140.7260, 250.7260, 160.6000, 060.4080, 060.4510
References:1. Padullaparthi B.D., Tatum J.A., Iga K. VCSEL industry : communication and sensing. Piscataway: WileyIEEE Press, 2021. 352 p.
2. Cheng H.-T., Yang Y.-C., Liu T.-H. et al. Recent advances in 850 nm VCSELs for high-speed interconnects // Photonics. 2022. V. 9. № 2. P. 107. https://doi.org/ 10.3390/photonics9020107
3. Stepniak G., Lewandowski A., Kropp J.R. et al. 54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF // Electron. Lett. 2016. V. 52. № 8. P. 633–635. https://doi.org/10.1049/el.2015.4264
4. Zhang L., Chen J., Agrell E. et al. Enabling technologies for optical data center networks: Spatial division multiplexing // J. Light. Technol. 2020. V. 38. № 1. P. 18–30. https://doi.org/10.1109/JLT.2019.2941765
5. Блохин С.А., Бобров М.А., Блохин А.А. и др. Анализ внутренних оптических потерь вертикально-излучающего лазера спектрального диапазона 1.3 μm с туннельным переходом на основе слоев n+-InGaAs/ p+-InGaAs/p+-InAlGaAs // Письма в журнал технической физики. 2021. Т. 47. № 23. С. 3–7. https://doi. org/10.21883/PJTF.2021.23.51774.18938
Blokhin S.A., Bobrov M.A., Blokhin A.A. et al. Analysis of internal optical loss of 1.3 μm vertical-cavity surface-emitting laser based on n++-InGaAs/р++- InGaAs/р++-InAlGaAs tunnel junction // Tech. Phys. Lett. 2020. V. 49. № S3. P. S173–S177. https://doi. org/10.1134/S1063785023900662
6. Блохин С.А., Бабичев А.В., Карачинскийи Л.Я. и др. Высокоскоростные одномодовые вертикально-излучающие лазеры спектрального диапазона 1550 нм // Физика и техника полупроводников. 2022. Т. 56. № 8. С. 814–823. https://doi.org/10.21883/FTP.2022. 08.53151.9890
Blokhin S.A., Babichev A.V., Karachinsky L.Ya. et al. 1550 nm range high-speed single-mode wafer-fused vertical-cavity surface-emitting lasers // Semiconductors. 2022. V. 56. № 8. P. 598–606. https://doi.org/ 10.1134/S1063782623070072
7. Park M.-R., Kwon O.-K., Han W.-S. et al. All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-μm wavelength range for CWDM band applications // IEEE Photonics Technol. Lett. 2006. V. 18. № 16. P. 1717–1719. https:// doi.org/10.1109/LPT.2006.879940
8. Babichev A., Blokhin S., Kolodeznyi E. et al. Longwavelength VCSELs: Status and prospects // Photonics. 2023. V. 10. № 3. P. 268. https://doi.org/10.3390/ photonics10030268
9. Hofmann W. High-speed buried tunnel junction vertical-cavity surface-emitting lasers // IEEE Photonics J. 2010. V. 2. № 5. P. 802–815. https://doi.org/10.1109/ JPHOT.2010.2055554
10. Muller M., Müller M., Wolf P., Gründl T. et al. Energyefficient 1.3 μm short-cavity VCSELs for 30 Gb/s errorfree optical links // ISLC 2012 International Semiconductor Laser Conference. San Diego, USA. October 7–10, 2012. P. 1–2. https://doi.org/10.1109/ISLC.2012. 6348316
11. Spiga S., Soenen W., Andrejew A. et al. Single-mode high-speed 1.5-μm VCSELs // J. Light. Technol. 2017. V. 35. № 4. P. 727–733. https://doi.org/10.1109/JLT. 2016.2597870
12. Caliman A., Mereuta A., Suruceanu G. et al. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band // Opt. Express. 2011. V. 19. № 18. P. 16996. https://doi.org/10.1364/OE.19.016996
13. Caliman A., Mereuta A., Wolf P. et al. 25 Gbps direct modulation and 10 km data transmission with 1310 nm waveband wafer fused VCSELs // Opt. Express. 2016. V. 24. № 15. P. 16329. https://doi.org/10.1364/OE.24.016329.
14. Babichev A.V., Karachinsky L.Ya., Novikov I.I. et al. 6-mW single-mode high-speed 1550-nm wafer-fused VCSELs for DWDM application // IEEE J. Quantum Electron. 2017. V. 53. № 6. P. 1–8. https://doi.org/ 10.1109/JQE.2017.2752700.
15. Блохин С.А., Бабичев А.В., Карачинский Л.Я. и др. Оптический передатчик спектрального диапазона 1,55 мкм на основе вертикально-излучающего лазера // Оптический журнал. 2022. Т. 89. № 11. С. 61–69. https://doi.org/10.17586/1023-5086-2022-89-11-61-69
Blokhin S.A., Babichev A.V., Karachinsky L.Ya. et al. 1.55-μm range optical transmitter based on a verticalcavity surface-emitting laser // J. Opt. Technol. 2022. V. 89. № 11. P. 681. https://doi.org/10.1364/JOT.89. 000681
16. Babichev A., Blokhin S., Gladyshev A. et al. Impact of device topology on the performance of high-speed 1550 nm wafer-fused VCSELs // Photonics. 2023. V. 10. № 6. P. 660. https://doi.org/10.3390/photonics10060660.
17. Moser P., Moser P., Lott J.A., Larisch G. et al. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs // J. Light. Technol. 2015. V. 33. № 4. P. 825–831. https://doi.org/10.1109/JLT.2014.2365237.
18. Müller M., Wolf P., Grasse C. et al. 1.3 μm short-cavity VCSELs enabling error-free transmission at 25 Gbit/s over 25 km fibre link // Electron. Lett. 2012. V. 48. № 23. P. 1487. https://doi.org/10.1049/el.2012.3355.
19. Bimberg D., Larsson A., Joel A. Faster, more frugal, greener VCSELs // Compound Semiconductor. 2014. V. 20. P. 34–39.
20. Wolf P., Li H., Caliman A. et al. Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3 μm wafer-fusion VCSELs for optical interconnects // ACS Photonics. 2017. V. 4. № 8. P. 2018–2024. https:// doi.org/10.1021/acsphotonics.7b00403
21. Ortsiefer M., Shau R., Böhm G. et al. Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency // Appl. Phys. Lett. 2000. V. 76. № 16. P. 2179. https://doi.org/ 10.1063/1.126290
22. Блохин С.А., Бобров М.А., Малеев Н.А. и др. Вертикально-излучающий лазер спектрального диапазона 1,55 мкм с туннельным переходом на основе слоев n++-InGaAs/p++-InGaAs/p++-InAlGaAs // Письма в журнал технической физики. 2020. Т. 46. № 17. С. 21–25. https://doi.org/10.21883/PJTF.2020.17.49888. 18393
Blokhin S.A., Bobrov M.A., Maleev N.A. et al. A vertical-cavity surface-emitting laser for the 1.55-μm spectral range with tunnel junction based on n++-InGaAs/p++-InGaAs/p++-InAlGaAs Layers // Tech. Phys. Lett. 2020. V. 46. № 9. P. 854–858. https:// doi.org/10.1134/S1063785020090023
23. Блохин С.А., Бобров М.А., Блохин А.А. и др. Влияние латерального оптического ограничения на характеристики вертикально-излучающих лазеров cпектрального диапазона 1,55 мкм с заращенным туннельным переходом // Письма в журнал технической физики. 2021. Т. 47. № 22. С. 3–8. https://doi. org/10.21883/PJTF.2021.22.51717.18942
Blokhin S.A., Bobrov M.A., Blokhin A.A. et al. Impact of transverse optical confinment on performance of 1.55 μm vertical-cavity surface-emitting lasers with a buried tunnel junction // Tech. Phys. Lett. 2022. V. 48. № 14. P. 46–50. https://doi.org/10.21883/PJTF.2021. 22.51717.18942
24. Haglund E.P., Westbergh P., Gustavsson J.S. et al. Impact of damping on high-speed large signal VCSEL dynamics // J. Light. Technol. 2014. V. 33. № 4. P. 795–801. https://doi.org/10.1109/JLT.2014.2364455
25. Blokhin S.A., Babichev A.V., Gladyshev A.G. et al. 20 Gbps 1300 nm range wafer-fused VCSELs with InGaAs/InAlGaAs superlattice-based active region // Optical Engineering. 2022. V. 61. № 9. P. 096109. https://doi.org/10.1117/1.OE.61.9.096109
26. Yu F.R., Zhang X., Leung V. Green communications and networking. Boca Raton: CRC Press, 2012. 399 p.