DOI: 10.17586/1023-5086-2024-91-12-54-62
УДК: 535.668.6
Comparative analysis of the methods for remote mapping the whiteness over the object surface
Full text on elibrary.ru
Мачихин А.С., Беляева А.С., Золотухина А.А. Сравнительный анализ методов дистанционного определения распределения белизны по поверхности объектов // Оптический журнал. 2024. Т. 91. № 12. С. 54–62. http://doi.org/10.17586/1023-5086-2024-91-12-54-62
Machikhin A.S., Belyaeva A.S., Zolotukhina A.A. Comparative analysis of the methods for remote mapping the whiteness over the object surface [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 54–62. http://doi.org/10.17586/1023-5086-2024-91-12-54-62
Subject of study is brightness and color characteristics of 10 whiteness standards. The purpose of this work is to develop a methodology for determining the spatial distribution of whiteness over the surface of objects using various optical instruments (spectrophotometry, color, multispectral and hyperspectral photography) and to identify the optimal system in terms of error and speed of measurement of whiteness. Methods. The accuracy of determining the whiteness and color of reference objects using various noncontact methods was analyzed. Main results. The laboratory study shows that multispectral imaging is the optimal method for remote whiteness and color mapping, in terms of measurement error and speed. Practical significance. The results obtained allow to compare the main optical methods for determining whiteness (brightness and hue) and determine the optimal one for solving a specific problem. The results obtained can be used in the development of methods for product quality control in various industries and various scientific research.
whiteness, brightness, chromaticity coordinates, multispectral imaging, hyperspectral imaging, spectral analysis, colorimetry
Acknowledgements:the research was carried out with the financial support of Ministry of Science and Higher Education of the Russian Federation within the state assignment of Scientific and Technological Centre of Unique Instrumentation of RAS (FFNS 2022 0010). This work was obtained using the equipment of the Core Shared Research Facility of Scientific and Technological Centre of Unique Instrumentation of RAS (STC UI RAS) [ckp-rf.ru ID: 456451, https://ckp.ntcup.ru/]. The authors express their gratitude to Constanta LLC for providing a set of reference whiteness samples
OCIS codes: 330.1730, 110.4234, 120.6200
References:1. Hunter R.S., Description and measurement of white surfaces // J. Opt. Soc. Am. 1958. V. 48. P. 597–605. http://doi.org/10.1364/JOSA.48.000597
2. Haque A.N.M.A., Smriti S.A., Hussain M. et al. Prediction of whiteness index of cotton using bleaching process variables by fuzzy inference system // Fash Text. 2018. V. 5. P. 4. http://doi.org/10.1186/s40691-017-0118-9
3. Wei M., Wang Y., Ma S., Luo M.R. Chromaticity and characterization of whiteness for surface colors // Opt. Express. 2017. V. 25. P. 27981–27994. http://doi.org/10.1364/OE.25.027981
4. Nascimento S.M.C., Pastilha R.C., Brenner E. Neighboring chromaticity influences how white a surface looks // Vision research. 2019. V. 165. P. 31–35. http://doi.org/10.1016/j.visres.2019.09.007
5. Zarubica A.R., Miljković M.N., Purenović M.M. et al. Colour parameters, whiteness indices and physical features of marking paints for horizontal signalization // Facta universitatis-series: Physics, chemistry and technology. 2005. V. 3. № 2. P. 205–216. http://doi.org/10.2298/FUPCT0502205Z
6. Goto H., Asanome N., Suzuki K. et al. Objective evaluation of whiteness of cooked rice and rice cakes using a portable spectrophotometer // Breeding science. 2014. V. 63. № 5. P. 489–494. http://doi.org/10.1270/jsbbs.63.489
7. CIE 15.2:1986 Colorimetry. Publ. Commission International de L'E-clairage Vienna, 1986. 30 p.
8. ASTM-E308-22. Standard practice for computing the colors of objects by using the CIE system. 09.2022. United States. ASTM. 15 p.
9. Блинова И. А., Минакова А. Р. Определение белизны бумаги и картона / Под ред. Михайлова Е.Л. Редакционно-издательский отдел УГЛТУ, 2014. 20 c.
10. Minz P.S., Saini C.S. RGB camera-based image technique for color measurement of flavored milk // Measurement: Food. 2021. V. 4. P. 100012. http://doi.org/10.1016/j.meafoo.2021.100012
11. Guan Y.H., Lath D.L., Lilley T.H. et al. The measurement of tooth whiteness by image analysis and spectrophotometry: a comparison // Journal of Oral Rehabilitation. 2005. V. 32. № 1. P. 7–15. http://doi.org/10.1111/j.1365-2842.2004.01340.x
12. Tejada-Casado M., Ghinea R., Martinez-Domingo M.A. et al. Validation of a hyperspectral imaging system for color measurement of invivo dental structures // Micromachines. 2022. V. 13. № 11. P. 1929. http://doi.org/10.3390/mi13111929
13. Khan H.A., Thomas J.B., Hardeberg J.Y., Laligant O. Illuminant estimation in multispectral imaging // J.Opt. Soc. Am. A. 2017. V. 34. P. 1085–1098. http://doi.org/10.1364/JOSAA.34.001085
14. Yao P., Wu H.C., Li Y., Xu J., Xin J.H. et al. Fluorescent whiteness measurement of textiles by multispectral imaging system // Coloration Technology. 2023. P. 1–8. http://doi.org/10.1111/cote.12721
15. Shimamura Y., Izumi T., Matsuyama H. Evaluation of a useful method to identify snow-covered areas under vegetation-comparisons among a newly proposed snow index, normalized difference snow index, and visible reflectance // Int. J. of Remote Sensing. 2006. V. 27. № 21. P. 4867–4884. http://doi.org/10.1080/01431160600639693
16. Smith T., Guild J. The CIE colorimetric standards and their use // Trans. Opt. Soc. 1931. V. 33. № 3. P. 73. http://doi.org/10.1088/1475-4878/33/3/301
17. Батшев В.И., Крюков А.В., Мачихин А.С., Золотухина А.А. Оптическая система мультиспектральной видеокамеры // Оптический журнал. 2023. Т. 90. № 11. С. 113–123. http://doi.org/10.17586/1023-5086-2023-90-11-113-123
Batshev V.I., Krioukov A.V., Machikhin A.S., Zolotukhina A.A. Multispectral video camera optical system // J. Opt. Tech. 2023 V. 90. № 11. P. 706–712. https://doi.org/10.1364/JOT.90.000706
18. Пожар В.Э., Мачихин А.С., Гапонов М.И., Широков С.В., Мазур М.М., Шерышев А.Е. Гиперспектрометр на основе перестраиваемых акустооптических фильтров для БПЛА // Светотехника. 2018. № 4. С. 47–50.
Pozhar V.E., Machikhin A.S., Gaponov M.I., Shirokov S.V., Mazur M.M., Sheryshev A.E. Hyper spectrometer based on an acousto-optic tunable filters for UAVs // Light & Engineering. 2019. V. 27. № 3. P. 99–104. https://doi.org/10.33383/2018-029