ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-12-63-69

УДК: 520.362, 535.417.22

Development and research of a fiber-optic temperature sensor based on the superposition of two regenerated fiber Bragg gratings

For Russian citation (Opticheskii Zhurnal):

Коннов Д.А., Казачкова И.Д., Коннов К.А., Куликова В.А., Варжель С.В. Разработка и исследование волоконно-оптического датчика температуры на основе суперпозиции двух регенерированных волоконных брэгговских решёток // Оптический журнал. 2024. Т. 91. № 12. С. 63–69. http://doi.org/10.17586/1023-5086-2024-91-12-63-69

 

Konnov D.A., Kazachkova I.D., Konnov K.A., Kulikova V.A., Varzhel S.V. Development and research of a fiber-optic temperature sensor based on the superposition of two regenerated fiber Bragg gratings [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 63–69. http://doi. org/10.17586/1023-5086-2024-91-12-63-69

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Fiber optic temperature sensor based on the superposition of two regenerated fiber Bragg gratings. Aim of study. Development of a fiber-optic temperature sensor from +25 to +1000 °C based on the superposition of two regenerated Bragg gratings and determination of its temperature sensitivity. Method. A superposition of two standard 14 mm long fiber Bragg gratings with reflectivities of 90% and 70% was heated (heating rate 500 °C/hour) from room temperature to a regeneration temperature of 920 °C (for G.657.A2 standard optical fibers), which was maintained until the formation of the regenerated structure was complete. Main results. During the development and temperature studies, which were carried out in the temperature range from +25 to +1000 °C with a step of 100 °C, a fiber-optic temperature sensor was implemented based on the superposition of two regenerated fiber Bragg gratings with reflection coefficients of about 40% and 30%, and their temperature sensitivity was established as 12.7 and 12.72 pm/°C, respectively. Practical significance. For the first time, a superposition of two regenerated fiber Bragg gratings with reflection coefficients  of more than 40% and 30% was obtained. The developed sensor based on such a structure allows using a larger range of measured temperatures with a limited range of interrogated radiation wavelengths. In addition, the dependence of the temperature sensitivity of a regenerated fiber Bragg grating on its central reflection wavelength was established for the first time.

Keywords:

fiber Bragg grating, superposition of fiber Bragg gratings, regeneration, temperature sensor, high-temperature measurements, temperature sensitivity

Acknowledgements:

 the research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (Project № FSER-2024-0006)

OCIS codes: 120.2230, 050.2230

References:

1. Dinusha S.Gu., On K.L., Zhengyong L. et al. Resurgent regenerated fiber Bragg gratings and thermal annealing techniques for ultra-high temperature sensing beyond 1400 °C // Opt. Exp. 2020. V. 28. № 7. P. 10595–10608. https://doi.org/10.1364/OE.375421
2. Leonhard P., Franz J.D., Robert R.J.M. et al. Regenerated fibre Bragg gratings: A critical assessment of more than 20 years of investigations // Opt Laser Technol. 2021. V. 134. № 106650. https://doi.org/10.1016/j. optlastec.2020.106650
3. Lindner E., Canning J., Chojetzki C. et al. Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration // Appl. Opt. 2011. V. 50. № 17. P. 2519–2522. https://doi.org/10.1364/AO.50.002519
4. Safari Yazd N., Chah K., Caucheteur C. et al. Comparison of regenerated fiber Bragg gratings properties in standard and B/Ge co-doped single-mode silica fibers //IEEE Sens. J. 2020. V. 28. № 7. P. 10595–10608. https://doi.org/10.1364/OE.375421
5. Holmberg P., Laurell F., Fokine M. Influence of preannealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers // Opt. Exp. 2015. V. 23. № 21. P. 27520–27535. https://doi.org/10.1364/OE.23.027520
6. Wang T., Shao L., Canning J. et al. Regeneration of fiber Bragg gratings under strain // Appl. Opt. 2013. V. 52. № 10. P. 2080–2085. https://doi.org/10.1364/ AO.52.002080
7. Cook K., Shao L., Canning J. Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre // Opt. Mater. Express. 2012. V. 2. № 12. P. 1733–1742. https://doi.org/10.1364/OME.2.001733
8. Lindner E., Chojetzki C., Brückner S. et al. Thermal regeneration of fiber Bragg gratings in photosensitive fibers // Opt. Exp. 2009. V. 17. № 15. P. 12523–12531. https://doi.org/10.1364/OE.17.012523
9. Lai M., Lim K., Gunawardena D. et al. Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing // Opt. Lett. 2015. V. 40. № 5. P. 748–751. https://doi.org/10.1364/OL.40.000748
10. Bandyopadhyay S., Canning J., Biswas P. et al. A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing // Opt. Exp. 2011. V. 19. № 2. P. 1198–1206. https://doi.org/10.1364/ OE.17.012523
11. Chong S., Chong W., Harun S. et al. Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature // Opt. Laser Technol. 2012. V. 44. № 4. P. 821–824. https://doi.org/10.1016/j.optlastec.2011. 11.024
12. Cheong Y., Chong W., Chong S. et al. Regenerated type-IIa fibre Bragg grating from a Ge–B codoped fibre via thermal activation // Opt. Laser Technol. 2014. V. 62. P. 69–72. https://doi.org/10.1016/j.optlastec. 2014.01.007
13. Lai M., Gunawardena D., Lim K. et al. Thermal activation of regenerated fiber Bragg grating in few mode fibers // Opt. Fiber Technol. 2016. V. 28. P. 7–10. https://doi.org/10.1016/j.optlastec.2014.01.007

14. Lindner E., Canning J., Chojetzki C. et al. Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation // Opt. Commun. 2011. V. 284. № 1. P. 183–185. https://doi.org/10.1016/j.optcom.2010.08.075
15. Oliveira V., Abe I., Alberto N. et al. Fibre Bragg gratings, towards a better thermal stability at high temperatures // Phys. Procedia. 2015. V. 62. P. 71–78. https://doi.org/10.1016/j.phpro.2015.02.013
16. Canning J, Bandyopadhyay S, Biswas P et al. Regenerated fibre Bragg gratings // Frontiers in Guided Wave Optics and Optoelectronics. InTech. 2010. https://doi.org/10.5772/39545
17. Коннов Д.А., Казачкова И.Д., Коннов К.А., Куликова В.А., Варжель С.В. Разработка и исследование волоконно-оптического датчика температуры на основе регенерированной волоконной брэгговской решетки // Оптический журнал. 2024. Т. 91. № 5. С. 66–71. http://doi.org/10.17586/1023-5086-2024-91-05-66-71
 Konnov D.A., Kazachkova I.D., Konnov K.A., Kulikova V.A., Varzhel S.V. Development and research of a fiber-optic temperature sensor based on a regenerated fiber Bragg grating [in Russian] // Journal of Optical Technology. 2024. V. 91. № 5. P. 66–71. http://doi. org/10.17586/1023-5086-2024-91-05-66-71