DOI: 10.17586/1023-5086-2024-91-12-84-90
УДК: 681.7.068
Development of a fiber-optic temperature sensor with chirped Bragg gratings, based on modulation of the intensity of optical radiation
Волошина А.В., Коробкова У.Р., Коннов Д.А., Варжель С.В., Карпов Е.Е. Разработка волоконно-оптического датчика температуры на базе чирпированных решёток Брэгга, основанного на модуляции интенсивности оптического излучения // Оптический журнал. 2024. Т. 91. № 12. С. 84–90. http://doi.org/10.17586/1023-5086-2024-91-12-84-90
Voloshina A.L., Korobkova U.R., Konnov D.A., Varzhel S.V., Karpov E.E. Development of a fiber-optic temperature sensor with chirped Bragg gratings, based on modulation of the intensity of optical radiation [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 84–90. http://doi.org/10.17586/1023-5086-2024-91-12-84-90
Subject of study. Fiber-optic temperature sensor that works by measuring the reflected power of optical radiation. Aim of study. Development of a fiber-optic temperature sensor based on chirped fiber Bragg gratings, working on measuring the power of reflected optical radiation. Method. The fiber-optic temperature sensor is a brass probe, inside of which there are two chirped Bragg gratings. One of the diffraction structures is additionally placed in a steel capillary and has higher temperature sensitivity than the second structure. When exposed to temperature, modulation of the overlap of the spectra of the first and second Bragg gratings occurs, which makes it possible to detect changes in the power of optical radiation reflected from the structures. Main results. A method is being developed to create a fiber-optic temperature sensor that works by measuring the intensity of optical radiation. The sensor's designed operating range is –20 °C to +80 °C. When conducting a temperature experiment in the range from –20 °C to +80 °C in steps of 10 °C, the sensor sensitivity is –0.015 dB/°C. The error in temperature measurement using the developed sensor is 1.0% compared to measuring the parameter with a thermocouple. The deviation of the sensor readings at a stable temperature is estimated at 0.06 °C. Practical significance. The developed temperature sensor meets the global trend in the development of cost-effective solutions. The method of measuring optical intensity modulation allows the use of a readily available interrogation scheme that eliminates expensive equipment such as an optical spectrum analyzer or interrogator. The advantages of this survey method are also the high speed of data recording, a relatively simple circuit and low requirements for operating conditions.
chirped fiber Bragg grating, fiber optic sensor, temperature sensor, spectral overlap, power measurement, intensity measurement, temperature measurement
OCIS codes: 060.0060, 060.2310, 060.3735
References:1. Elsherif M., Salih A.E., Muñoz M.G. Alam F., AlQattan B., Antonysamy D.S., Zaki M.F., Yetisen A.K., Park S., Wilkinson T.D., Butt H. Optical fiber sensors: Working principle, applications, and limitations // Advanced Photonics Research. 2022. V. 3. P. 2100371. https://doi.org/10.1002/adpr.202100371
2. Sabri N., Aljunid S.A., Salim M.S., Fouad S. Fiber optic sensors: Short review and applications // Recent Trends in Physics of Material Science and Technology. Springer Series in Materials Science. 2015. V. 204. https://doi.org/10.1007/978-981-287-
128-2_19
3. Pendão C., Silva I. Optical fiber sensors and sensing networks: Overview of the main principles and applications // Sensors. 2022. V. 22. № 19. P. 7554. https:// doi.org/10.3390/s22197554
4. Ignazio F., Jose M.A., Pedro A.C., Salvador S. Fiber optic shape sensors: A comprehensive review // Optics and Lasers in Engineering. 2021. V. 139. P. 106508. https://doi.org/10.1016/j.optlaseng.2020.106508
5. Zhang H., Jiang J., Liu S., Chen H., Zheng X., Qiu Y. Overlap spectrum fiber Bragg grating sensor based on light power demodulation // Sensors. 2018. № 18 (5). P. 1597. https://doi.org/10.3390/s18051597
6. Voloshina A.L., Dmitriev A.A., Varzhel S.V., Kulikova V.A. Development and investigation of the sensitive element of the amplitude fiber-optic temperature sensor based on superimposed chirped Bragg gratings // Optical Fiber Technology. 2023. V. 75. P. 103175. https://doi.org/10.1016/j.yofte.2022.103175
7. Куликова В.А., Варжель С.В., Дмитриев А.А., Волошина А.Л., Клишина В.А., Калязина Д.В. Методика корпусирования волоконной брэгговской решетки для ее пассивной температурной компенсации // Оптический журнал. 2023. Т. 90. № 9. С. 28–36. https:// doi.org/10.17586/1023-5086-2023-90-09-28-36
Kulikova V.A., Varzhel S.V., Dmitriev A.A., Voloshina A.L., Klishina V.A., Kaliazina D.V. Method of packaging a fiber Bragg grating for passive temperature compensation // Journal of Optical Technology. 2023. V. 90. № 9. P. 507–511. https://doi.org/10.1364/ JOT.90.000507
8. Михнева А.А., Грибаев А.И., Варжель С.В., Фролов Е.А., Новикова В.А., Коннов К.А., Залесская Ю.К. Запись и исследование спектральных характеристик чирпированных волоконных решеток Брэгга // Оптический журнал. 2018. Т. 85. № 9. С. 12–16. http://doi.org/10.17586/1023-5086-2018-85-09-12-16
Mikhneva A.A., Gribaev A.I., Varzhel' S.V., Frolov E.A., Novikova V.A., Konnov K.A., Zalesskaya Y.K. Inscription and investigation of the spectral characteristics of chirped fiber Bragg gratings // Journal of Optical Technology. 2018. V. 85. № 9. P. 531–534. https://doi. org/10.1364/JOT.85.000531
9. Идрисов Р.Ф., Грибаев А.И., Стам А.М., Варжель С.В., Сложеникина Ю.И., Коннов К.А. Запись суперпозиций волоконных решёток Брэгга с использованием интерферометра Тальбота // Оптический журнал. 2017. Т. 84. № 10. С. 56–60.
Idrisov R.F., Gribaev A.I., Stam A.M., Varzhel S.V., Slozhenikina Yu.I., Konnov K.A. Inscription of superimposed fiber Bragg gratings using a Talbot interferometer // Journal of Optical Technology. 2017. V. 84. № 10. P. 694–697. https://doi.org/10.1364/JOT. 84.000694
10. Dmitriev A.A., Gribaev A.I., Varzhel S.V., Konnov K.A., Motorin E.A., High-performance fiber Bragg gratings arrays inscription method // Optical Fiber Technology. 2021. V. 63. P. 102508. https://doi.org/10.1016/j.yofte.2021.102508
11. Gribaev A.I., Pavlishin I.V., Stam A.M., Idrisov R.F., Varzhel S.V., Konnov K.A. Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer // Optical and Quantum Electronics. 2016. V. 48. № 12. Art. 540. https://doi.org/10.1007/s11082-016-0816-3