DOI: 10.17586/1023-5086-2024-91-12-99-109
УДК: 544.032.65
Influence of optical microcavitation on fragmentation and defragmentation processes of carbon nanoparticle agglomerates under the action of nanosecond laser pulses
Full text on elibrary.ru
Шамова А.А., Шандыбина Г.Д., Поляков Д.С., Беликов А.В. Влияние оптической микрокавитации на процессы фрагментации и дефрагментации агломератов углеродных наночастиц при воздействии наносекундных лазерных импульсов // Оптический журнал. 2024. Т. 91. № 12. С. 99–109. http://doi.org/10.17586/1023-5086-2024-91-12-99-109
Shamova A.A., Shandybina G.D., Polyakov D.S., Belikov A.V. Influence of optical microcavitation on fragmentation and defragmentation processes of carbon nanoparticle agglomerates under the action of nanosecond laser pulses [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 99–109. http://doi.org/10.17586/1023-5086-2024-91-12-99-109
Subject of study. Nonlinear process of transformation of carbon black nanoparticle agglomerates in a biological liquid medium under the influence of nanosecond laser radiation. Aim of study. Determination of the role of optical microcavitation in combination with accumulative effects in the competitive processes of fragmentation and defragmentation of carbon black nanoparticle agglomerates in a liquid medium under the influence of a series of nanosecond laser pulses in the near-IR range. Method. Optical microscopy combined with software processing of images of phantom samples irradiated in various laser modes. Main results. The nonlinear contribution of accumulative heating to the structural changes of carbon black nanoparticles agglomerates has been experimentally established. A region of parameters (the number of laser pulses, their repetition rate) has been found in which the transition from the fragmentation process to the defragmentation process occurs. Mechanisms of fragmentation and defragmentation of carbon black nanoparticle agglomerates have been proposed. Practical significance. The regularities studied are important for optimizing modes of laser processing of carbon black nanoparticle agglomerates in liquid media, including biological ones.
carbon black, nanosecond laser pulse, agglomerate, fragmentation, defragmentation, microbubbles, suspension, accumulative heating
Acknowledgements:the reported study was funded by the Russian Science Foundation, Project № 19-79-10208
OCIS codes: 140.3390, 140.3615
References:1. Høgsberg T., Loeschner K., Löf D., Serup J. Tattoo inks in general usage contain nanoparticles // Br. J. Dermatol. 2011. V. 165. № 6. P. 1210–1218. https://doi. org/10.1111/j.1365-2133.2011.10561.x
2. Hong S., Carlson J., Lee H., Weissleder R. Bioorthogonal radiopaque hydrogel for endoscopic delivery and universal tissue marking // Adv. Healthc. Mater. 2016. V. 5. № 4. Р. 421–426. https://doi.org/10.1002/adhm. 201500780
3. Li J., Deng X., Wang L., Liu J., Xu K. Clinical application of carbon nanoparticles in lymphatic mapping during colorectal cancer surgeries: A systematic review and meta-analysis // Dig. Liver. Dis. 2020. V. 52. № 12. P. 1445–1454. https://doi.org/10.1016/j.dld.2020. 08.020
4. Hasan M.R., Herz J., Hermann D.M., Doeppner T.R. Intravascular perfusion of carbon black ink allows reliable visualization of cerebral vessels // J. Vis. Exp. 2013. V. 71. P. e4374. https://doi.org/10.3791/4374
5. Sengupta A., Gray M.D., Kelly S.C., Holguin S.Y., Thadhani N.N., Prausnitz M.R. Energy transfer mechanisms during molecular delivery to cells by laser-activated carbon nanoparticles // Biophys. J. 2017. V. 112. № 6. P. 1258–1269. https://doi.org/10.1016/j.bpj.2017.02.007
6. Skandalakis G.P., Rivera D.R., Rizea C.D., Bouras A., Jesu Raj J.G., Bozec D., Hadjipanayis C.G. Hyperthermia treatment advances for brain tumors // Int. J. Hyperther. 2020. V. 37 № 2. P. 3–19. https://doi.org/10. 1080/02656736.2020.1772512.
7. IARC working group on the evaluation of carcinogenic risks to humans. IARC monographs on the evaluation of carcinogenic risks to humans: Carbon black, titanium dioxide and talc. Lyon: International Agency for Research on Cancer, 2010. 456 p.
8. Шубный А.Г., Жигарьков В.С., Юсупов В.И., Свиридов А.П. Лазерное обесцвечивание татуировок: новый подход // Квантовая электроника. 2021. Т. 51. №. 1. С. 8–16. https://doi.org/10.1070/QEL17484
Shubnyy A.G., Zhigarkov V.S., Yusupov V.I., Sviridov A.P. Laser bleaching of tattoos: a new approach // Quantum Elec. 2021. V. 51. №. 1. P. 8–16. https://doi. org/10.1070/QEL17484
9. Тучин В.В. Оптика биологических тканей. Методы рассеяния света в медицинской диагностике / Перевод с англ. Дербова В.Л. Под ред. Тучина В.В. / М.: Физматлит, 2012. 811 с.
Tuchin V.V. Tissue optics: Light scattering methods and instruments for medical diagnosis. Third ed. Bellingham: SPIE Press, 2015. 935 p.
10. Mansour K., Soileau M.J., Van Stryland E.W. Nonlinear optical properties of carbon-black suspensions (ink) // JOSA B. 1992. V. 9. № 7. P. 1100–1109. https:// doi.org/10.1364/JOSAB.9.001100
11. Chakravarty P. Photoacoustic drug delivery using carbon nanoparticles activated by femtosecond and nanosecond laser pulses // PhD (Chemical & Biomolecular Engineering) thesis. Atlanta: Georgia Institute of Technology, 2009. 155 p.
12. Mukherjee S., Mishra P.C., Chaudhuri P. Stability of heat transfer nanofluids – a review // ChemBioEng. Rev. 2018. V. 5. № 5. P. 312–333. https://doi.org/ 10.1002/cben.201800008
13. Ko B., Lu W., Sokolov A.V., Lee H.W.H., Scully M.O., Zhang Z. Multi-pulse laser-induced bubble formation and nanoparticle aggregation using MoS2 nanoparticles // Sci Rep 2020. V. 10. № 1. Р. 15753. https://doi.org/10.1038/s41598-020-72689-x
14. Электронный ресурс URL: https://www. worldfamoustattooink.com/pages/compliancecertificates (World Famous Tattoo Ink / Material safety data sheet: True black)
15. Duck F.A. Physical properties of tissues: a comprehensive reference book. London, San Diego, New York, Boston, Sydney, Tokyo, Toronto: Academic Press, 2013. 336 р.
16. International commission on illumination colorimetry. Recommendations on uniform color spaces, color-difference equations, psychometric color terms. Supplement № 2 to CIE publication № 15. Paris: Bureau central de la CIE, 1978. 21 р.
17. Sardana K., Ranjan R., Ghunawat S. Optimising laser tattoo removal // J. Cutan. Aesthet. Surg. 2015. V. 8.
№ 1. P. 16–24. https://doi.org/10.4103/0974-2077.155068
18. Shandybina G., Shamova A., Belikov A., Polyakov D. Analysis of gas bubble formation on light-absorbing microinclusion in liquid during laser irradiation: experimental and theoretical investigation // Opt. Eng. 2021. V. 60. № 1. P. 016103. https://doi.org/10.1117/1.OE.60.1.016103
19. Polyakov D., Shandybina G., Shamova A. Analytical 3D modeling of accumulative heating under multipulse laser irradiation of inorganic materials and biological tissues // Therm. Sci. Eng. Prog 2022. V. 31. P. 101284. https://doi.org/10.1016/j.tsep.2022.101284
20. Юсупов В.И. Образование сверхкритической воды под воздействием лазерного излучения // Сверхкритические флюиды: Теория и практика. 2019. Т. 14. № 1. С. 71–83. https://doi.org/10.1134/ S1990793119070297
Yusupov V.I. Formation of supercritical water under laser radiation // Russ. J. Phys. Chem. B. 2019. V. 13. P. 1245–1253. https://doi.org/10.1134/S1990793119070297