ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-03-14-22

УДК: 535.016

Stabilization of a system that enhances collinear interaction nonlinearity of light with a traveling refractive index grating

For Russian citation (Opticheskii Zhurnal):
Герасименко В.С., Герасименко Н.Д., Петров В.М. Стабилизация системы, усиливающей нелинейности при коллинеарном взаимодействии оптического излучения с бегущей решеткой показателя преломления // Оптический журнал. 2024. Т. 91. № 3. С. 14–22.


Gerasimenko V.S., Gerasimenko N.D., Petrov V.M. Stabilization of a system that enhances collinear interaction nonlinearity of light with a traveling refractive index grating [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 3. P. 14–22.

For citation (Journal of Optical Technology):

Subject of study. System of integrated electro-optical modulator and fiber circulating loop. Aim of study. Maximizing the nonlinearity of the response of an integrated electro-optical modulator and at the same time obtaining a stable output frequency spectrum. Method. Experimental studies of the spectra of optical (1550 nm) and radio-frequency (1 GHz) waves collinear interaction for various conditions of the back coupling system. Main results. It is experimentally demonstrated that to maximize the nonlinearity of the electro-optical modulator response in a fiber circulating loop, it is necessary to achieve not only in-phase wave propagation within the interaction region, but also phase coincidence at the beginning of the interaction region during each pass of the system. In this case, the main contribution to the number of peaks of the emerging optical frequency comb comes from the matching of the radio-frequency wave with itself. The stability of the output spectrum over time is primarily ensured by the self-consistency of the optical radiation phase. Practical significance. The scheme described in the article makes it possible to create discretely tunable sources of optical frequency combs, which in the future can be used, among other things, for fiber communication systems with frequency multiplexing.


traveling refractive index gratings, radio-frequency light modulation, phase modulation of optic wave, integrated optics

OCIS codes: 060.0060, 130.0130


1.    Petrov V.M., Shamray A.V. Interference and diffraction for information photonics [in Russian]. St. Petersburg: "Lan" Publ., 2019. 460 p.

2.   Yariv A. Introduction to optical electronics, 2nd ed. N.Y.: Holt, Rinehart and Winston, 1976. 438 p.

3.   Petrov V.M., Agruzov P.M., Lebedev V.V., Il'ichev I.V., Shamray A.V. Broadband integrated optical modulators: Achievements and prospects // Physics-Uspekhi. 2021. V. 64. № 7. P. 722.

4.   Sajeed S., Chaiwongkhot P., Huang A., et al. An approach for security evaluation and certification of a complete quantum communication system // Sci. Rep. 2021. V. 11. № 1. P. 1–16.

5.   Wooten E.L., Kissa K.M., Yi-Yanet A., et al. A review of lithium niobate modulators for fiber-optic communications systems // IEEE J. Selected Topics in Quantum Electronics. 2000. V. 6. № 1. P. 69–82.

6.   Vashukevich E.A., Lebedev V.V., Ilichev I.V., et al. Broadband chip-based source of quantum noise with electrically controllable beam splitter // Phys. Rev. Appl. 2022. V. 17. № 6. P. 064039.

7.    Petrov V.M., Koroteev D.A., Semisalov D.A., et al. Integrated optical C-NOT gates: Estimation of the main parameters for practical design // Photonics Russia. 2023. № 1. P 58–70.

8.   Petrov V.M., Shamrai A.V., Il’ichev I.V., et al. National microwave integrateed optical modulators for quantum communications // Photonics Russia. 2020. V. 14. № 5. P 414–422.

9.   Ho K.P., Kahn J.M. Optical frequency comb generator using phase modulation in amplified circulating loop // IEEE Photonics Technol. Lett. 1993. V. 5. № 6. P. 721–725.

10. Kawanishi T., Sasaki M., Shimotsu S., et al. Reciprocating optical modulation for harmonic generation // IEEE Photonics Technol. Lett. 2001. V. 13. № 8. P. 854–856.

11.  Kogahara S., Shinada S., Nakajima S., et al. Reciprocating optical modulation on erbium-doped LiNbO3 for harmonic generation // IEEE Photonics Technol. Lett. 2007. V. 19. № 19. P. 1565–1567.

12.  Kawanishi T., Sakamoto T., Shinada S., Izutsu M. Optical frequency comb generator using optical fiber loops with single-sideband modulation // IEICE Electronics Exp. 2004. V. 1. № 8. P. 217–221.

13.  Dou Y., Zhang H., Yao M. Generation of flat optical-frequency comb using cascaded intensity and phase modulators // IEEE Photonics Technol. Lett. 2012. V. 24. № 9. P. 727–729.

14.  Metcalf A.J., Torres-Company V., Leaird D.E., Weiner A.M. High-power broadly tunable electrooptic frequency comb generator // IEEE J. Selected Topics in Quantum Electronics. 2013. V. 19. № 6. P. 231–236.

15.  Ren T., Zhang M., Wang C., et al. An integrated low-voltage broadband lithium niobate phase modulator // IEEE Photonics Technol. Lett. 2019. V. 31. № 11. P. 889–892.

16.  Parfenov M., Agruzov P., Tronev A., et al. Metal electrodes for filtering the localized fundamental mode of a ridge optical waveguide on a thin lithium niobate nanofilm // Nanomaterials. 2023. V. 13. № 20. P. 2755.

17.  Gerasimenko N.D., Gerasimenko V.S., Petrov V.M. Effective collinear interaction of radiation with a traveling refractive index grating in electro-optical waveguides in lithium niobate // Journal of Optical Technology. 2022. V. 89. № 4. P. 191–196.

18.       Esipenko I.A., Lykov D.A. Mathematical model of thermal drift of a fiber-optic gyroscope and its experimental verification // Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.]. 2017. № 5. P. 31–46.