ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-04-73-81

УДК: 53.06

Multifocal achromatic imaging lenses

For Russian citation (Opticheskii Zhurnal):

Дубынин С.Е., Копёнкин С.С., Путилин А.Н., Морозов А.В., Путилин Н.А., Бородин Ю.П., Дружин В.В. Ахроматические изображающие линзы с несколькими фокусами // Оптический журнал. 2024. Т. 91. № 4. С. 73–81.­-5086­-2024­-91­-04­-73-­81


Dubynin S.E., Kopenkin S.S., Putilin A.N., Morozov A.V., Putilin N.A., Borodin Y.P., Druzhin V.V. Multifocal achromatic imaging lenses [in Russian] // Optickhesii Zhurnal. 2024. V. 91. № 4. P. 73–81.­-5086­-2024­-91-04-­73­-81

For citation (Journal of Optical Technology):

Subject of study. The full­color holographic/diffraction optical elements inherently representing the multifocal achromatic imaging lenses were investigated. The tasks of modeling and recording of these elements were also discussed. Aim of study. The research and development of compact optical systems for Augmented Reality/Mixed Reality/Extended Reality devices with wide field of view and eye­box is the main target. Method. The analog recording scheme with several sources in signal branch was used. The specialized software MatLab and Optic Studio was used for modeling and evaluation of parameters of the optical systems of the Augmented Reality/Mixed Reality/Extended Reality devices. Main results. The authors have proposed several modifications of such elements; the possibilities and limitations of each variant, and also the parameters of the prepared samples were evaluated by means of simulation, on the bases of which the best sample was chosen. The total efficiency of 30–40% for such elements was achieved for each wavelength in Red­Green­Blue color model (460, 514/532, 640 nm). Practical significance. The technology for registration of holograms with several sources in signal branch allows to significantly enlarge the size of the eye­box without sacrificing the width of the angular field of view, to downsize the device of virtual and augmented reality.


holographic optical element, multifocal lens, eye­box multiplier

OCIS codes: 030.6140, 050.1950, 050.1970, 050.7330, 090.1970, 090.2820, 090.2870, 090.2890, 090.7330

  1. Cheng D., Wang Q., Liu Y. et al. Design and manufacture AR head­mounted displays: A review and outlook // Light: Advanced Manufacturing. 2021. № 2. P. 350–369.
  2. Kress B., Pace M. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets // Light: Advanced Manufacturing. 2022. № 3. P. 771–801.
  3. Cakmakci O., Rolland J. Head­worn displays: a review // Journal of Display Technology. 2006. № 2. P. 199–216.
  4. Ding Y., Yang Q., Li Y. et al. Waveguide­based augmented reality displays: perspectives and challenges // eLight. 2023. № 3. P. 1–34.­023­00057­z
  5. Luo L., Wang Z., Li J. et al. Wide­field­of­view trans­reflective RGB­achromatic metalens for augmented reality // Photonics. 2023. № 10. P. 590–599.
  6. Li G., Lee D., Jeong Y. et al. Holographic display for see­through augmented reality using mirror­lens holographic optical element // Optics Letters. 2016. № 41. P. 2486–2489.
  7. Kim S., Park J. Optical see­through Maxwellian near­to­eye display with an enlarged eyebox // Optics Letters. 2018. № 43. P. 767–770.
  8. Lin T., Zhan T., Zou J. et al. Maxwellian near­eye display with an expanded eyebox // Optics Express. 2020. № 28. P. 38616–39625.
  9. Seo W., Yang D., Kim S. et al. Display apparatus providing expanded eye box // US Patent 0 134 565 A1. 2023. Publ. May 04, 2023.
  10. Kim S., Druzhin V., Malinina P. et al. Display apparatus having wide viewing window // US Patent 11 487 117 B2. 2022. Publ. Nov. 01, 2022.