DOI: 10.17586/1023-5086-2024-91-04-93-101
УДК: 535.015, 53.06, 681.785
Installation for measuring the absolute and differential delay of signal propagation in optical fiber
Full text on elibrary.ru
Publication in Journal of Optical Technology
Хайретдинова В.М., Колмогоров О.В., Любченко Д.А. Установка для измерений абсолютной и дифференциальной задержки распространения сигнала в оптическом волокне // Оптический журнал. 2024. Т. 91. № 4. С. 93–101. http://doi.org/10.17586/1023-5086-2024-91-04-93-101
Khayretdinova V.M., Kolmogorov O.V., Lyubchenko D.A. Installation for measuring the absolute and differential delay of signal propagation in optical fiber [In Russian] // Opticheskii Zhurnal. 2024. V. 91. № 4. P. 93–101. http://doi.org/10.17586/1023-5086-2024-91-04-93-101
Victoria M. Khaĭretdinova, Oleg V. Kolmogorov, and Daria A. Lyubchenko, "Device for measurement of absolute and differential delay of signal propagation in optical fiber," Journal of Optical Technology. 91(4), 267-271 (2024). https://doi.org/10.1364/JOT.91.000267
The subject of the study is installation for measuring the absolute and differential delay of signal propagation in optical fiber, and factors affecting the installation error. The aim of study is to develop the installation for measuring the absolute and differential delay of signal propagation in optical fiber, which, unlike the existing installations, will allow to measure the signal propagation delays in optical fibers with picosecond resolution at specified wavelengths, as well as to investigate the dispersion properties of optical fiber coils and other fiber-optic devices. Method. The developed installation is based on the use of a phase-shift method of measuring the chromatic dispersion in optical fiber. Main results. The installation for measuring the absolute and differential delay of signal propagation in optical fiber has been developed. The spectral range of the installation is from 1500 to 1630 nm. The main factors affecting the accuracy of differential delay measurements using the developed installation are determined, estimates of the error limits of the installation depending on the frequencies of the modulating signals are obtained. Practical significance. The developed measuring installation can be used for research of optical fibers and fiber-optic devices in the development of systems for comparing and synchronizing time scales, systems for transmitting reference time and frequency signals and other equipment of fiber-optic communication lines.
optical fiber, signal propagation delay, differential delay, chromatic dispersion, time scale comparison systems
OCIS codes: 060.2400, 060.2430, 060.2270
References:1. Golampur M., Mansursamai M., Malakzade A., Nikosefat M. Fiber Bragg grating security fence with temperature compensation based on a tilted cantilever
beam // Journal of Optical Technology. 2022. V. 89. № 2. P. 101–106. https://doi.org/10.1364/JOT. 89.000101
2. Pankov A.A. Mathematical model of determining microporosity of materials with a fiber-optic sensor with a distributed Bragg grating // Journal of Optical
Technogy. 2020. V. 87. № 4. P. 193–198. https://doi.org/10.1364/JOT.87.000193
3. Yage Zhan, Fan Lin, Aijin Guo, Changheng Feng, Zeyu Sun, Muhuo Yu, Haochun Sun, Kehan Li, Weigao Qiu, Xiaokun Liu. Polyimide-coated fiber Bragg grating sensor for monitoring of the composite materials curing process // Journal of Optical Technology. 2020. V. 87. № 8. P. 501–505. https://doi.
org/10.1364/JOT.87.000501
4. Rost M., Piester D., Yang V., Feldman T., Wübbena T., Bauch A. Transmission of time over optical fibers at a distance of 73 km with an error of less than 100 ps // Metrology. 2012. V. 49. P. 772–778. http://doi.org/10.1088/0026-1394/49/6/772
5. Ivanov A.V., Mokhovikov N.V., Kagan S.N., Malimon A.N., Pesterev S.V., Palchikov V.G., Galyshev A.A. Comparisons of geographically remote time and
frequency standards using fiber-optic communication lines // Proceedings of IPA RAS. 2012. Iss. 23. P. 131–135.
6. Predel K., Grosche G., Raupach S.M.F., Droste S., Terra O., Alnis J., Legereau T., Hensch T.V., Udem T., Holzwart R., Schnatz H. 920-kilometer fiber-opticcommunication line for frequency metrology from the 19th the decimal point // Science. 2012. V. 336. P. 441–444. http://doi.org/10.1126/science.1218442
7. Fujieda Miho, Kumagai Motohiro, Nagano Shigeo, Ido Tetsuya. Frequency transmission using optical fibers // Journal of the National Institute of Information and Communication Technologies. 2010. V. 57. № 3/4. P. 209–217.
8. Fedorova D.M., Balaev R.I., Malimon A.N., Kurchanov A.F., Troyan V.I. Transmission of reference radio frequencies over a fiber-optic line with electronic compensation of disturbances // Izmeritel’naya Tekhnika. 2015. № 9. P. 34–37.
9. Slivchinsky L., Krekhlik P., Chubla A., Buchek L., Lipinski M. Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km // IOP PUBLISHING Metrologia. 2013. V. 50. № 2. P. 133. http://doi.org/10.1088/0026-1394/ 50/2/133
10. Kolmogorov O.V., Shchipunov A.N., Prokhorov D.V., Donchenko S.S., Buev S.G., Malimon A.N., Balaev R.I., Fedorova D.M. A set of tools for comparing time scales of standards and transmission of reference radio frequency signals by VOLS // Almanac of Modern Metrology. 2017. № 11. P. 150–170.
11. Krekhlik P., Slivczynski L., Buczek L., Lipinski M. Fiber-optic joint transmission of time and frequency with active stabilization of propagation delay //
IEEE transactions and Measurements. 2012. V. 61. № 10. P. 2845–2851. http://doi.org/10.1109/TIM.2012. 2196396
12. Agraval G. Nonlinear fiber optics. Trans. from English. M.: Mir, 1996. 324 p.
13. Tarabrina A.D., Tupyakov D.V., Vorontsova I.O., Goncharov R.K., Zinoviev A.V., Smirnov S.V., Kiselev F.D., Egorov V.I. Application of optimization
methods to minimize noise in quantum key distribution systems integrated into fiber-optic communication lines using dense wavelength division multiplexing
// Journal of Optical Technology. 2022. V. 89. № 9. P. 549–554. https://doi.org/10.1364/JOT.89. 000549
14. Kolmogorov O.V., Shchipunov A.N., Prokhorov D.V., Donchenko S.S., Buev S.G. Method for determining the delay difference in propagation of laser radiation pulses through an optical fiber of systems of comparisons and synchronization of time scales // Photonics. 2018. V. 12. P. 696–703.
15. Kolmogorov O.V., Shchipunov A.N.., Prokhorov D.V., Donchenko S.S. Optical reflectometer for precision measurements — scheme and results of theoretical and experimental studies // Applied Photonics. 2018. V. 5. № 1–2. P. 92–101. http://doi.org/10.15593/2411-4367/2018.1-2.06
16. Kolmogorov O.V., Shchipunov A.N., Denisenko O.V., Donchenko S.S., Prokhorov D.V., Buev S.G., Chemesova E.V. Reducing the measurement error of signal propagation delays using an optical reflectometer with picosecond resolution // Izmeritel’naya Tekhnika. 2020. № 1. P. 30–34.
17. ANSI/TIA-455-169. Chromatic dispersion measurement of optical fibers by the phase-shift method.