DOI: 10.17586/1023-5086-2024-91-05-66-71
УДК: 520.362, 535.417.22
Development and research of a fiber-optic temperature sensor based on a regenerated fiber Bragg grating
Full text on elibrary.ru
Konnov D.A., Kazachkova I.D., Konnov K.A., Kulikova V.A., Varzhel S.V. Development and research of a fiber-optic temperature sensor based on a regenerated fiber Bragg grating [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 5. P. 66–71. http://doi.org/10.17586/1023-5086-2024-91-05-66-71
Subject of study. Fiber-optic temperature sensor based on a regenerated fiber Bragg grating. Aim of study. Development of a high temperature sensor based on a regenerated fiber Bragg grating and conducting its temperature study up to a temperature of 1000 оC. Method. The regenerated fiber Bragg grating is obtained by annealing in a high-temperature muffle furnace with a “seed” fiber Bragg grating recorded on hydrogenated optical fiber SMF-28, at a continuously rising temperature from room temperature to 920 оC (regeneration temperature in the case of SMF-28 fiber). The reflection coefficient of the “seed” grating is as close as possible to 100%, the structure length is 15 mm. Heating rate 500 оC/hour. Main results. During the work and temperature studies, which were carried out in the temperature range from +25 to +1000 оC in steps of 100 оC, a fiber-optic temperature sensor was developed based on a regenerated fiber Bragg grating with a reflectance of about 50%, the temperature sensitivity of which was 14,9 pm/оC. Practical significance. The proposed method for manufacturing regenerated fiber Bragg gratings makes it possible to use them as a sensitive element of a temperature sensor. Its ability to operate at such high temperatures opens up wide possibilities for use in a huge range of industrial applications (for example, gas turbine engines, power plants, steel mills, etc.). The simplicity of its implementation makes it possible to obtain a fiber-optic temperature sensor without the use of additional equipment and material costs.
fiber Bragg grating, regeneration, temperature sensor, high-temperature measurements, temperature sensitivity
OCIS codes: 120.2230, 050.2230
References:1. Dinusha S. Gu., On K.L., Zhengyong L., et al. Resurgent regenerated fiber Bragg gratings and thermal annealing techniques for ultra-high temperature sensing beyond 1400 C // Opt. Exp. 2020. V. 28. № 7. P. 10595–10608. https://doi.org/10.1364/OE.375421
2. Leonhard P., Franz J.D., Robert R.J.M., et al. Regenerated fibre Bragg gratings: A critical assessment of more than 20 years of investigations // Opt. Laser Technol. 2021. V. 134. Р. 106650. https://doi.org/10.1016/j.optlastec.2020.106650
3. Safari Yazd N., Chah K., Caucheteur C., et al. Comparison of regenerated fiber Bragg gratings properties in standard and B/Ge co-doped single-mode silica fibers // IEEE Sens. J. 2020. V. 28. № 7. P. 10595–10608. https://doi.org/10.1364/OE.375421
4. Lindner E., Canning J., Chojetzki C., et al. Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration // Appl. Opt. 2011. V. 50. № 17. P. 2519–2522. https://doi.org/10.1364/AO.50.002519
5. Holmberg P., Laurell F., Fokine M. Influence of preannealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers // Opt. Exp. 2015. V. 23. № 21. P. 27520–27535. https://doi.org/10.1364/OE.23.027520
6. Wang T., Shao L., Canning J., et al. Regeneration of fiber Bragg gratings under strain // Appl. Opt. 2013. V. 52. № 10. P. 2080–2085. https://doi.org/10.1364/AO.52.002080
7. Cook K., Shao L., Canning J. Regeneration and helium: Regenerating Bragg gratings in helium-loadedgermanosilicate optical fibre // Opt. Mater. Exp. 2012.V. 2. № 12. P. 1733–1742. https://doi.org/10.1364/OME.2.001733
8. Lindner E., Chojetzki C., Brückner S., et al. Thermal regeneration of fiber Bragg gratings in photosensitive fibers // Opt. Exp. 2009. V. 17. № 15. P. 12523–12531. https://doi.org/10.1364/OE.17.012523
9. Lai M., Lim K., Gunawardena D., et al. Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing // Opt. Lett. 2015. V. 40. № 5. P. 748–751. https://doi.org/10.1364/OL.40.000748
10. Bandyopadhyay S., Canning J., Biswas P., et al. A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing // Opt. Exp. 2011. V. 19. № 2. P. 1198–1206. https://doi.org/10.1364/OE.17.012523
11. Chong S., Chong W., Harun S., et al. Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature // Opt. Laser Technol. 2012. V. 44. № 4. P. 821–824. https://doi.org/10.1016/j.optlastec.2011.11.024
12. Cheong Y., Chong W., Chong S., et al. Regenerated type-IIa fibre Bragg grating from a Ge–B codoped fibre via thermal activation // Opt. Laser Technol. 2014. V. 62. P. 69–72. https://doi.org/10.1016/j.optlastec.2014.01.007
13. Lai M., Gunawardena D., Lim K., et al. Thermal activation of regenerated fiber Bragg grating in few mode fibers // Opt. Fiber Technol. 2016. V. 28. P. 7–10. https://doi.org/10.1016/j.optlastec.2014.01.007
14. Lindner E., Canning J., Chojetzki C., et al. Thermal regenerated type IIa fiber Bragg gratings for ultrahigh temperature operation // Opt. Commun. 2011. V. 284. № 1. P. 183–185. https://doi.org/10.1016/j.optcom.2010.08.075
15. Oliveira V., Abe I., Alberto N., et al. Fibre Bragg gratings, towards a better thermal stability at high temperatures // Phys. Procedia. 2015. V. 62. P. 71–78. https://doi.org/10.1016/j.phpro.2015.02.013
16. Моор Я.Д., Коннов К.А., Плотников М.Ю. и др. Высокоточный волоконно-оптический датчик температуры на основе интерферометра Фабри–Перо с отражающими тонкопленочными многослойными структурами // Научно-техн. вест. ин-форм. технол., механики и оптики. 2022. Т. 22. № 3. С. 442–449. https://doi.org/10.17586/2226-1494-2022-22-3-442-449. Moor Ya.D., Konnov K.A., Plotnikov M.Yu., et al. High-precision fiber-optic temperature sensor based on a Fabry–Perot interferometer with reflective thinfilm multilayer structures [in Russian] // Scientific and Technical Bulletin of Information Technologies, Mechanics and Optics. 2022. V. 22. № 3. P. 442–449. https://doi.org/10.17586/2226-1494-2022-22-3-442-449