DOI: 10.17586/1023-5086-2024-91-05-85-94
УДК: 535.37, 544.778.4
Dependence of quantum yield of up-conversion luminescence of powdered NaYF4:Yb,Er samples on ytterbium ion concentration and excitation intensity
Full text on elibrary.ru
Шурухина А.В., Баринов Д.С., Жаровов Д.А., Рудакова А.В., Тананаев П.Н., Янковский Г.М., Барышев А.В., Емелин А.В., Рябчук В.K. Зависимость квантового выхода ап-конверсионной люминесценции порошков NaYF4:Yb,Er от содержания ионов иттербия и интенсивности возбуждения // Оптический журнал. 2024. Т. 91. № 5. С. 85–94. http://doi.org/10.17586/1023-5086-2024-91-05-85-94
Shurukhina A.V., Barinov D.S., Zharovov D.A., Rudakova A.V., Tananaev P.N., Yankovskii G.M., Baryshev A.V., Emeline A.V., Ryabchuk V.K. Dependence of quantum yield of upconversion luminescence of powdered NaYF4:Yb,Er samples on ytterbium ion content and excitation intensity // Opticheskii Zhurnal. 2024. V. 91. № 5. P. 85–94. http://doi.org/10.17586/1023-5086-2024-91-05-85-94
Subject of study. A series of powdered NaYF4:Yb,Er samples with different ytterbium ion content. Aim of study. Determination of the change in the quantum yield of up-conversion luminescence of NaYF4:Yb,Er as a function of ytterbium ion content the intensity of excitation by laser radiation at a wavelength of 975 nm. Method. Determination of the quantum yield of up-conversion luminescence using a spectrometer and integrating sphere. Main results. The quantum yield of up-conversion luminescence was measured for a series of powdered NaYF4:Yb,Er samples with different ytterbium ions content. The optimal ytterbium ion content corresponding to the maximum efficiency of upconversion was found to be 0.4 at %. Practical significance. The obtained results can be used in optoelectronics, medicine and in the creation of laser facilities.
up-conversion luminescence, fluoride matrices, lanthanides, quantum yield, nonlinear optical processes, concentration dependence
Acknowledgements:Subject of study. A series of powdered NaYF4:Yb,Er samples with different ytterbium ion content. Aim of study. Determination of the change in the quantum yield of up-conversion luminescence of NaYF4:Yb,Er as a function of ytterbium ion content the intensity of excitation by laser radiation at a wavelength of 975 nm. Method. Determination of the quantum yield of up-conversion luminescence using a spectrometer and integrating sphere. Main results. The quantum yield of up-conversion luminescence was measured for a series of powdered NaYF4:Yb,Er samples with different ytterbium ions content. The optimal ytterbium ion content corresponding to the maximum efficiency of upconversion was found to be 0,4 at %. Practical significance. The obtained results can be used in optoelectronics, medicine and in the creation of laser facilities.
OCIS codes: 260.0260, 160.0160
References:1. Zhou J., Liu Q., Feng W., et al. Upconversion luminescent materials: advances and applications // Chem. Rev. 2015. V. 115. № 1. P. 395–465. https://doi.org/10.1021/ cr400478f
2. Auzel F. Upconversion and anti-stokes processes with f and d ions in solids // Chem. Rev. 2004. V. 104. P. 139. https://doi.org/10.1021/cr020357g
3. Menyuk N., Dwight K., Pierce J.W. NaYF4:Yb, Er an efficient upconver-sion phosphor // Appl. Phys. Lett. 1972. V. 21. № 4. P. 159–163. https://doi.org/10.1063/1.1654325
4. Bazhukova I.N., Pustovarov V.A., Myshkina A.V., et al. Luminescent nanomaterials doped with rare earth ions and prospects for their biomedical applications (A review). // Opt. Spectrosc. 2020. V. 128. P. 2050–2068. https://doi.org/10.1134/S0030400X20120875
5. Khoroshko L.S., Gaponenko N.V., Rudenko M.V., et al. Erbium lumi-nescence in (Y, Er, Yb)3Al5O12 powders // J. Opt. Technol. 2019. V. 86. № 2. P. 124–128. https://doi.org/10.1364/JOT.86.000124
6. Afanas’ev V.P., Vasil’ev V.N., Ignat’ev A.I., et al. New luminescent glasses and prospects of using them in solar energy // J. Opt. Technol. 2013. V. 80. № 10. P. 635–641. https://doi.org/10.1364/JOT.80.000635
7. Charu D., Anjana Y., Diksha B., et al. Impact of crystal structure on optical properties and temperature sensing behavior of NaYF4:Yb3+/Er3+ nanoparticles // RSC Adv. 2023. V. 13. P. 20975. https://doi.org/10.1039/D3RA03148A
8. Krämer K.W., Biner D., Frei G., et al. Hexagonal sodium yttrium fluoridebased green and blue emitting upconversion phosphors // Chem. Mater. 2004. V. 16. P. 1244–1251. https://doi.org/10.1021/cm031124o
9. Yi G.S., Chow G.M. Synthesis of hexagonal phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence // Advanced Functional Materials. 2006. V. 16. № 18. P. 2324–2329. https://doi.org/10.1002/adfm.200600053
10. Nadort A., Zhao J., Goldys E.M. Lanthanide upconversion luminescence at the nanoscale: Fundamentals and optical properties // Nanoscale. 2016. V. 8. № 27. P. 13099–13130. https://doi.org/10.1039/C5NR08477F
11. Orlovskii Yu.V., Basiev T.T., Pukhov K.K., et al. Multiphonon relaxation of mid IR transitions of rare-earth ions in fluorite type crystals // Advanced Solid-State Photonics 2004. Santa Fe, New Mexico, United States. February 1–4, 2004. Paper WB9.
12. Yamada N., Shionoya S., Kushida T. Phonon-assisted energy transfer between trivalent rare earth ions // J. Phys. Soc. Japan. 1972. V. 32. № 6. P. 1577–1586. https://doi.org/10.1143/JPSJ.32.1577
13. Lin C., Berry M.T., Anderson R., et al. Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment // Chem. Mater. 2009. V. 21. P. 3406–3413. https://doi.org/10.1021/cm901094m
14. Jin Y., Qin W., Zhang J. Preparation and optical properties of SrF2:Eu3+ nanospheres // J. Fluor. Chem. 2008. V. 29. P. 515–518. https://doi.org/10.1016/j.jfluchem.2008.03.010
15. Yagoub M.Y.A., Swart H.C., Noto L.L., et al. The effects of Eu-concentrations on the luminescent properties of SrF2:Eu nanophosphor // J. Lumin. 2014. V. 156. P. 150–156. https://doi.org/10.1016/j.jlumin. 2014.08.014
16. Zhang C., Hou Z., Chai R., et al. Mesoporous SrF2 and SrF2:Ln3+ (Ln = Ce, Tb, Yb, Er) hierarchical microspheres: Hydrothermal synthesis, growing mechanism, and luminescent properties // J. Phys. Chem. 2010. V. 114. P. 6928–6936. https://doi.org/10.1021/ jp911775z
17. Peng J., Hou S., Liu X., et al. Hydrothermal synthesis and luminescence properties of hierarchical SrF2 and SrF2:Ln3+ (Ln = Er, Nd, Yb, Eu, Tb) micro/nanocomposite architectures // Mat. Res. Bull. 2012. V. 47. P. 328–332. https://doi.org/10.1016/j.materresbull. 2011.11.030
18. Sun J., Xian J., Zhang X., Du H. Hydrothermal synthesis of SrF2:Yb3+/Er3+ micro-/nanocrystals with multiform morphologies and up-conversion properties // J. Rare Earth. 2011. V. 29. P. 32–38. https://doi.org/10.1016/S1002-0721(10)60396-1
19. Sun J., Xian J., Du H. Facile synthesis of well-dispersed SrF2:Yb3+/Er3+ upconversion nanocrystals in oleate complex systems // Appl. Surf. Sci. 2011. V. 257. P. 3592–3595. https://doi.org/10.1016/j.apsusc. 2010.11.082
20. Yagoub M.Y.A., Swart H.C., Noto L.L., et al. Surface characterization and photoluminescence properties of Ce3+, Eu co-doped SrF2 nanophosphor // Materials. 2015. V. 8. P. 2361–2375. https://doi.org/10.3390/ ma8052361