ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-06-5-17

УДК: 535.372, 535.34, 616-073.8

Gadolinium-doped carbon dots with long-wavelength emission for dual-modal imaging

For Russian citation (Opticheskii Zhurnal):

Ефимова А.А., Бадриева З.Ф., Бруй Е.А., Мирущенко М.Д., Алейник И.А., Митрошин А.М., Волина О.В., Королева А.В., Жижин Е.В., Степаниденко Е.А., Ушакова Е.В. Легированные гадолинием углеродные точки с излучением в длинноволновой области спектра для двухмодальной визуализации // Оптический журнал. 2024. Т. 91. № 6. С. 5–17. http://doi.org/ 10.17586/1023-5086-2024-91-06-5-17

 

Efimova A.A., Badrieva Z.F., Brui E.A., Miruschenko M.D., Aleinik I.A., Mitroshin A.M., Volina O.V., Koroleva A.V., Zhizhin E.V., Stepanidenko E.A., Ushakova E.V. Gadolinium-doped carbon dots with long-wavelength emission for dual-modal imaging // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 5–17. http://doi.org/ 10.17586/1023-5086-2024-91-06-5-17

For citation (Journal of Optical Technology):

Arina A. Efimova, Zilya F. Badrieva, Ekaterina A. Brui, Mikhail D. Miruschenko, Ivan A. Aleinik, Alexander M. Mitroshin, Olga V. Volina, Aleksandra V. Koroleva, Evgeniy V. Zhizhin, Evgeniia A. Stepanidenko, and Elena V. Ushakova, "Gadolinium-doped carbon dots with long-wavelength emission for dual-modal imaging," Journal of Optical Technology. 91(6), 362-369 (2024).  https://doi.org/10.1364/JOT.91.000362

Abstract:

Subject of study. Luminescent carbon dots derived from o-phenylenediamine and gadolinium chloride or nitrate hexahydrate. Aim of study. Fabrication of gadolinium-doped carbon dots with long-wavelength photoluminescence with the properties of a contrast agent for magnetic resonance imaging; study of the impact of the precursor type used on the chemical composition and optical transitions of the resulting nanoparticles. Method. Carbon dots were synthesized by a one-step solvothermal method. To study the composition and optical properties, spectroscopy methods were used. Magnetic resonance imaging was performed using a clinical magnetic resonance imaging scanner with a field 1.5 T. Main results. In this work, two types of carbon dots were synthesized from o-phenylenediamine and gadolinium chloride or nitrate hexahydrate by a solvothermal method. It has been established that metal doping in a concentration sufficient for further research occurs only with the use of gadolinium chloride. In addition, the presence of gadolinium chloride during the synthesis leads to the formation of luminescent centers within carbon dots with emission at 600–720 nm and photoluminescence quantum yield of 6.3%. The use of gadolinium nitrate results in an increase in the nitrogen content of o-phenylenediamine-based carbon nanoparticles, but metal doping does not occur. The luminescent band with an emission maximum at 550 nm and photoluminescence quantum yield of 7.4% is originated from the formation of o-phenylenediamine derivatives in such carbon dots. It is shown that the resulting gadolinium-doped carbon dots change relaxation times during magnetic resonance scanning; the relaxivities r1 and r2 were calculated to be 6.4 and 38.6 l х mmol–1 х s–1, respectively. It has been established that during magnetic resonance scanning the synthesized carbon dots act as a positive contrast agent. Practical significance. Carbon dots with long-wavelength emission are promising as nanoprobes for luminescence imaging. Doping with gadolinium has made it possible to expand the scope of application; the developed nanoparticles can also be used as a contrast agent during magnetic resonance imaging. Thus, o-phenylenediamine and gadolinium chloride hexahydrate-based carbon dots can be further used as a dual-modal nanoprobe for bioimaging.

Keywords:

carbon points, long-wavelength photoluminescence, luminescent imaging, magnetic resonance imaging, contrast media

Acknowledgements:

 the paper was supported financially by a grant from the Russian Science Foundation (RSF) No. 22.73.00090, https://rscf.ru/project/22-73-00090/. Part of the work related to MRI experiments was supported by state assignment No. FSER-2022–0010 within the framework of the national project “Science and Universities”

OCIS codes: 160.2540, 160.4236, 170.3880, 170.4580, 300.6280

References:
1. Wang J., Fu Y., Gu Z. et al. Multifunctional carbon dots for biomedical applications: Diagnosis, therapy, and theranostic // Small. 2024. V. 20. № 3. P. 2303773. https://doi.org/10.1002/smll.202303773
2. Hussain M., Khan W., Ahmed F. et al. Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics // Chemical Engineering Journal. 2023. V. 465. https://doi.org/10.1016/j. cej.2023.143010
3. Khavlyuk P.D., Stepanidenko E.A., Bondarenko D.P. et al. The influence of thermal treatment conditions (solvothermal versus microwave) and solvent polarity on the morphology and emission of phloroglucinolbased nitrogen-doped carbon dots // Nanoscale. Royal Society of Chemistry (RSC). 2021. V. 13. № 5. P. 3070–3078. https://doi.org/10.1039/d0nr07852b
4. Kosolapova K.D., Koroleva A.V., Arefina I.A. et al. Energylevel engineering of carbon dots through a post-synthetic treatment with acids and amines // Nanoscale. 2023. V. 15. № 19. P. 8845–8853. https://doi.org/10.1039/d3nr00377a
5. Arefina I.A., Kurshanov D.A., Vedernikova A.A. et al. Carbon dot emission enhancement in covalent complexes with plasmonic metal nanoparticles // Nanomaterials. MDPI. 2023. V. 13. № 2. P. 223. https://doi.org/10.3390/nano13020223
6. Stepanidenko E.A., Vedernikova A.A., Ondar S.O. et al. Copper-doped carbon nanoparticles as a two-modal nanoprobe for luminescent and magnetic resonance imaging // Opt Spectrosc. 2023. V. 131. № 7. P. 927–933.
7. Stepanidenko E.A., Vedernikova A.A., Badrieva Z.F. et al. Manganese-doped carbon dots as a promising nanoprobe for luminescent and magnetic  resonance imaging // Photonics. 2023. V. 10. № 7. P. 757. https://doi.org/10.3390/photonics10070757
8. Redondo-Fernandez G., Cigales Canga J., Soldado A. et al. Functionalized heteroatom-doped carbon dots for biomedical applications: A review // Anal Chim Acta. Elsevier, 2023. V. 1284. P. 341874. https://doi.org/10.1016/J.ACA.2023.341874
9. Xiao Y.D. Paudel R., Liu J. et al. MRI contrast agents: Classification and application (Review) // Int J Mol Med. Spandidos Publications. 2016. V. 38. № 5.
P. 1319–1326. https://doi.org/10.3892/IJMM.2016.2744/HTML
10. Pintaske J., Martirosian P., Graf H. et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla // Invest Radiol. 2006. V. 41. № 3. P. 213–221. https://doi.org/10.1097/01.rli.0000197668.44926.f7
11. Ding H., Wang D., Sadat A. et al. Single-atom gadolinium anchored on graphene quantum dots as a magnetic resonance signal amplifier // ACS Appl Bio Mater. 2021. V. 4. № 3. P. 2798–2809. https://doi.org/10.1021/acsabm.1c00030
12. Liu Y., Zhi X., Hou W. et al. Gd3+-ion-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual
imaging and antitumor therapy // Nanoscale. 2018. V. 10. № 40. P. 19052–19063. https://doi.org/10.1039/C8NR05886E
13. Molaei M.J. Turmeric-derived gadolinium-doped carbon quantum dots for multifunctional fluorescence imaging and MRI contrast agent // J Lumin. 2023.
V. 257. P. 119692. https://doi.org/10.1016/j.jlumin.2023.119692
14. Li X., Fu Y., Zhao S. et al. Metal ions-doped carbon dots: Synthesis, properties, and applications // Chemical Engineering Journal. 2022. V. 430. P.  133101. https://doi.org/10.1016/j.cej.2021.133101
15. Du F., Zhang L., Zhang L. et al. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors // Biomaterials. 2017. V. 121. P. 109–120. https://doi.org/10.1016/j.biomaterials.2016.07.008
16. Molaei M.J. Gadolinium-doped fluorescent carbon quantum dots as MRI contrast agents and fluorescent probes // Sci Rep. 2022. V. 12. № 1. P. 17681. https://doi.org/10.1038/s41598-022-22518-0
17. Huang Y., Li L., Zhang D. et al. Gadolinium-doped carbon quantum dots loaded magnetite nanoparticles as a bimodal nanoprobe for both fluorescence and magnetic resonance imaging // Magn Reson Imaging. 2020. V. 68. P. 113–120. https://doi.org/10.1016/j.mri. 2020.02.003
18. Li Y., Li B., Wang X. et al. Safe and efficient magnetic resonance imaging of acute myocardial infarction with gadolinium-doped carbon dots // Nanomedicine. 2020. V. 15. № 24. P. 2385–2398. https://doi.org/10.2217/nnm-2020-0160
19. Mauro N., Cillari R., Gagliardo C. et al. Gadoliniumdoped carbon nanodots as potential anticancer tools for multimodal image-guided photothermal therapy and tumor monitoring // ACS Appl Nano Mater. 2023. V. 6. № 18. P. 17206–17217. https://doi.org/10.1021/acsanm.3c03583
20. Wang H., Xing H., Liu W. et al. Gadolinium-doped carbon dots as a ratiometric fluorometry and colorimetry dual-mode nano-sensor based on specific chelation for morin detection // Sens Actuators B Chem. 2022. V. 352. P. 130991. https://doi.org/10.1016/j.snb.2021.130991
21. Liu L., Qian M., Yang Z. et al. Ratiometric visualization of folic acid with a smartphone-assisted fluorescence paper device based on gadolinium and nitrogen co-doped CDs // Dyes and Pigments. 2023. V. 209. P. 110877. https://doi.org/10.1016/j.dyepig.2022.110877
22. Chen H., Qiu Y., Ding D. et al. Gadolinium-encapsulated graphene carbon nanotheranostics for imagingguided photodynamic therapy // Advanced Materials. 2018. V. 30. № 36. P. 1802748. https://doi.org/10.1002/adma.201802748
23. Musaeva D.U., Kopylov A.N., Syuy A.V. et al. Gadolinium-doped carbon nanoparticles with red fluorescence and enhanced proton relaxivity as bimodal nanoprobes for bioimaging applications // Applied Sciences. 2023. V. 13. № 16. P. 9322. https://doi.org/10.3390/app13169322
24. Fang Y., Zhou L., Zhao J. et al. Facile synthesis of pH-responsive gadolinium(III)-doped carbon nanodots with red fluorescence and magnetic resonance properties for dual-readout logic gate operations // Carbon N Y. 2020. V. 166. P. 265–272. https://doi.org/10.1016/j.carbon.2020.05.060
25. Mamardashvili N.Z., Golubchikov O.A. Spectral properties of porphyrins, their precursors and derivatives // Russ. Chem. Rev. 2001. V. 70. № 7. P. 577–606. https://doi.org/10.1070/RC2001v070n07ABEH000661
26. Zhang Q., Wang R., Feng B. et al. Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation // Nat Commun. Nature Publishing Group. 2021. V. 12. № 1. P. 6856. https://doi.org/10.1038/s41467-021-27071-4
27. Uttamlal M., Sheila Holmes-Smith A. The excitation wavelength dependent fluorescence of porphyrins // Chem Phys Lett. North-Holland. 2008. V. 454.
№ 4–6. P. 223–228. https://doi.org/10.1016/J.CPLETT. 2008.02.012
28. Visheratina A.K., Martynenko I.V., Orlova A.O. et al. Investigation of biocompatible complexes of Mn2+- doped ZnS quantum dots with chlorin e6 // Journal of Optical Technology. 2014. V. 81. № 8. P. 444–448. https://doi.org/10.1364/JOT.81.000444
29. Venkatesh Y., Venkatesan M., Ramakrishna B. et al. Ultrafast time-resolved emission and absorption spectra of meso-pyridyl porphyrins upon soret band excitation studied by fluorescence up-conversion and transient absorption spectroscopy // J Phys Chem B. 2016. V. 120. № 35. P. 9410–9421. https://doi.org/10.1021/acs.jpcb.6b05767
30. Muravieva T.D., Dadeko A.V., Kiselev V.M. et al. Comparative study of the photophysical properties of lowtoxicity photosensitizers based on endogenous porphyrins // Journal of Optical Technology. 2018. V. 85. № 11. P. 709–721. https://doi.org/10.1364/JOT.85.000709
31. Caspani S. Magalhães R., Araújo J.P. et al. Magnetic nanomaterials as contrast agents for MRI // Materials. Multidisciplinary Digital Publishing Institute.
2020. V. 13. № 11. P. 2586. https://doi.org/10.3390/ma13112586