ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-06-87-98

УДК: 620.3; 535.37; 533.9; 533.924; 535.24

Effect of plasma treatment of Ag/ZnO hybrid photocatalysts on the optical properties and morphology of Ag nanoparticles

For Russian citation (Opticheskii Zhurnal):

Савастенко Н.А., Щербович А.А., Люшкевич В.А., Филатова И.И., Маскевич С.А. Влияние плазменной обработки гибридных фотокатализаторов Ag/ZnO на оптические свойства и морфологию наночастиц Ag // Оптический журнал. 2024. Т. 91. № 6. С. 87–98. http://doi.org/10.17586/1023-5086-2024-91-06-87-98

 

 Savastenko N.A., Shcherbovich A.A., Lyushkevich V.A., Filatova I.I., Maskevich S.A. Effect of plasma treatment of Ag/ZnO hybrid photocatalysts on the optical properties and morphology of Ag nanoparticles [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 87–98. http://doi.org/10.17586/1023-5086-2024-91-06-87-98

For citation (Journal of Optical Technology):

Natalie A. Savastenko, Anastasiya A. Shcherbovich, Veronika A. Lyushkevich, Irina I. Filatova, and Sergei A. Maskevich, "Effect of plasma treatment of Ag/ZnO hybrid photocatalysts on the optical properties and morphology of Ag nanoparticles," Journal of Optical Technology. 91(6), 410-415 (2024). https://doi.org/10.1364/JOT.91.000410

Abstract:

Subject of study. Ag/ZnO hybrid photocatalysts and silver nanoparticles as the active phase of hybrid photocatalysts after treatment in low-temperature plasma of a dielectric barrier discharge. Aim of study. The paper aimed to establishing the nature of the influence of plasma treatment of Ag/ZnO hybrid photocatalysts on the optical properties and morphology of silver nanoparticles and the relationship between plasma-induced morphological changes in silver nanoparticles and the photocatalytic activity of Ag/ZnO in the photodegradation reactions of methyl orange and caffeine. Method. The treatment of hybrid Ag/ZnO photocatalysts and ensembles of silver nanoparticles was carried out in a dielectric barrier discharge plasma in air at normal pressure. The photocatalytic properties of the original and plasma-treated materials were studied from the point of view of their activity in the decomposition reactions of methyl orange and caffeine in aqueous solutions by ultraviolet light exposure. The concentrations of methyl orange and caffeine were measured by spectrophotometry. Changes in the properties of the original and plasma-modified materials were studied using the methods of photoluminescence spectroscopy, spectrophotometry, and atomic force microscopy. Main results. A plasma-induced decrease in the size of agglomerates of silver nanoparticles was observed. The size decrease of silver nanoparticles agglomerates was accompanied with a simultaneous increase in the number of individual nanoparticles. It was shown that the change in nanoparticles size depended on the energy of plasma treatment duration. Plasma treatment of ZnO-based hybrid photocatalysts resulted in a noticeable increase in the fluorescence lifetime of ZnO. Increase in the fluorescence lifetime can be considered as one of the factors increasing the photocatalysts activity in the reaction of photodegradation of organic pollutants in aqueous media. Practical significance. Increasing the efficiency of Ag/ZnO for purifying aqueous media from organic impurities by photodegradation is an important task in the field of effective environmental management.

Keywords:

photocatalysts, ZnO, photodegradation, plasma treatment, plasmonic nanoparticles, atomic force microscopy, ultraviolet and visible spectroscopy, fluorescence lifetime, dielectric barrier discharge

Acknowledgements:

the authors are grateful to the staff of the Center for Shared Use of Unique Scientific Equipment “Belarusian Interuniversity Center for Scientific Research Services” of the Faculty of Physics of the Belarusian State University for assistance in conducting research using atomic force microscopy, as well as to the staff of the Laboratory of Molecular Spectroscopy and Photonics of Nanostructures of the Y. Kupala State University of Grodno for assistance in conducting studies of fluorescence decay kinetics. This work was partially financially supported by the State Research Program “Convergence 2025. Task 2.2.02.” and by the Ministry of Education of Republic of Belarus (Grant № 20211534).

OCIS codes: 180.0180, 240.6680, 250.5230, 300.1030

References:
1. Liu Y., Dai X., Li J., Cheng Sh., Zhanga J., Ma Y. Recent progress in TiO2–biochar-based photocatalysts for water contaminants treatment:strategies to improve photocatalytic performance // RSC Adv. 2024. V. 14. P. 478–491. https://doi.org/10.1039/d3ra06910a
2. Zhang Y., Ju Sh., Casals Gr., Tang J., Lin Y., Li X., Liang L., Jia Zh., Zeng M., Casals E. Facile aqueous synthesis and comparative evaluation of TiO2-semiconductor and TiO2-metal nanohybrid photocatalysts in antibiotics degradation under visible light // RSC Adv. 2023. V. 13. № 47. P. 33187–33203. https://doi.org/10.1039/d3ra06231g
3. Navidpour A.H., Hosseinzadeh A., Zhou J., Huang Zh. Progress in the application of surface engineering methods in immobilizing TiO2 and ZnO coatings for environmental photocatalysis // Catalysis Reviews. 2021. V. 65. № 1. P. 822–873. https://doi.org/10.1080/01614940.2021.1983066
4. Elhalil A., Elmoubarki R., Sadiq M’h., Abdennouri M., Kadmi Ya., Favier L., Qourzal S., Barka N. Enhanced photocatalytic degradation of caffeine as a model pharmaceutical pollutant by Ag-ZnO-Al2O3 nanocomposite // Desalination and Water Treatment. 2017. V. 94. P. 254–262. https://doi.org/10.5004/dwt.2017.21587
5. Savastenko N.A., Filatova I.I., Lyushkevich V.A., Chubrik N.I., Brüser V., Shcherbovich A.A., Maskevich S.A. Effect of impregnation by silver nanoparticles on the efficiency of plasma-treated ZnO-based catalysts // High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes. 2020. V. 24. № 1. P. 21–45. https://doi.org/ 10.1615/ HighTempMatProc.2020033434
6. Savastenko N.A., Shcherbovich A.A., Filatova I.I., Lyushkevich V.A., Maskevich S.A. Effect of DBD-plasma treatment on activity of ZnO-based photocatalysts impregnated with silver nanoparticles // High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes. 2022. V. 26. № 6. P. 25–42. https://doi.org/ DOI:10.1615/HighTempMatProc.2022042454
7. Wagner E., Brandenburg R., Kozlov K.V., Sonnenfeld A., Michel P., Behnke J.F. The barrier discharge: basic properties and applications to surface treatment // Vacuum. 2003. V. 71. № 3. P. 417–436. https://doi.org/10.1016/S0042207X(02)00765-0
8. Lee P.C., Meisel D. Adsorption and surface enhanced Raman of dyes on silver and gold solutions // J. Phys. Chemistry. 1982. V. 86. Iss. 17. P. 3391–3395.
9. Sergeev B.M., Kiryukhin M.V., Prusov A.N., Sergeev V.G. Preparation of silver nanoparticles in aqueous solutions of polyacrylic acid // Vestnik of Moscow State University. Series Chemistry (in Russian). 1999. № 2. P. 123–133.
10. Maskevich А., Stsiapura V., Kurguzenkov S., Laviash A. Hardware and software complex for fluorescence decay
studies // Vestnik of Yanka Kupala State University of Grodno. Series 2 (in Russian). 2013. № 3 (159). P. 107–119.
11. O'Connor D.V., Phillips D. Time-correlated single-photon counting. New York: Academic Press, 1984. 288 p.
12. Maskevich A., Stsiapura V., Balinski P. Analysis of fluorescence decay kinetics of thioflavin T by a maximum entropy method // J. Appl. Spectrosc. 2010. V. 77. № 2. P. 194–201.
13. Kansal S.K., Singh M., Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts // J. Hazard. Mater. 2007. V. 141. № 3. P. 581–590. https://doi.org/10.1016/ j.jhazmat.2006.07.035
14. Moore C.J., Louder R., Thompson V.C. Photocatalytic activity and stability of porous polycrystalline ZnO thin-films grown via a two-step thermal oxidation process // Coatings. 2014. V. 4. № 3. P. 651–669. https://doi.org/10.3390/coatings4030651
15. Brüninghoff R., Wenderich K., Korterik J.P. et al. Time-dependent photoluminescence of nanostructured anatase TiO2 and the role of bulk and surface processes // J. Phys. Chem. C. 2019. V. 123. № 43. P. 6653–26661. https://pubs.acs.org/doi/10.1021/acs.jpcc.9b06890
16. Liqiang J., Yichun Q., Baiqi W., Shudan L., Baojiang J., Libin Y., Wei F., Honggang F., Jiazhong S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity // Solar Energy Materials and Solar Cells. 2006. V. 90. P. 1773–1787. https://doi.org/10.1016/j.solmat.2005.11.007
17. Li Y., Uchino R., Tokizono T., Paulsen A., Zhong M., Shuzo M., Yamada I., Delaunay J.-J. Effect of hydrogen plasma treatment on the luminescence and photoconductive properties of ZnO nanowires // Mater. Res. Soc. Symp. Proc. 2010. V. 1206. P. 1206-M13-03P1–1206–M13–03P6. https://doi.org/10.1557/PROC-1206-M13-03
18. Gorokhova E.I., Eron’ko S.B., Oreshchenko E.A., Rodnyi P.A., Venevtsev I.D., Kul’kov A.M., Sukharzhevskaya E.S. Structural, optical, and luminescence properties of ZnO:Er ceramic // Journal of Optical Technology. 2019. V. 86(12). P. 814–819. https://doi.org/10.1364/JOT.86.000814
19. Sans. J.A., Segura A., Mollar M., Marı́  B. Optical properties of thin films of ZnO prepared by pulsed laser deposition // Thin Solid Films. 2004. V. 453. P. 251–255. https://doi.org/10.1016/j.tsf.2003.11.155
20. Liu X., Wu X., Cao H., Chang R.P.H. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition // J. Appl. Phys. 2004. V. 95. P. 3141–3147. https://doi.org/10.1063/1.1646440
21. Shalish I., Temkin H., Narayanamurti V. Size-dependent surface luminescence in ZnO nanowires // Phys. Rev. B. 2004. V. 69. P. 1–4. https://doi.org/10.1103/ PhysRevB.69.245401
22. Park S. An S., Mun Y. et al. Enhanced luminescence of Ag-decorated ZnO nanorods // J. Mater. Sci.: Mater. Electron. 2013. V. 24. № 12. P. 4906–4912. https://doi. org/ 10.1007/s10854-013-1496-4
23. Lin J.M., Lin H.Y., Cheng Ch.L., Chen Ya.F. Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles // Nanotechnol. 2006. V. 17. № 17. P. 4391. https://doi.org/10.1088/0957-4484/17/17/017
24. Cheng C.W., Sie E.J., Liu B. et al. Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles // Appl. Phys. Lett. 2010. V. 96. № 7. P. 071107. https://doi.org/10.1063/1.3323091
25. Sidorov A.I. Double plasmon resonance in spherical nanostructures // J. of Technical Physics (in Russian). 2006. V. 76. № 4. P. 86–90.
26. Sastry M., Mayya K.S., Bandyopadhyay K. PH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1997. V. 127. № 1–3. P. 221–228. https://doi. org/10.1016/S0927-7757(97)00087-3
27. Gorham J.M., Rohlfing A.B., Lippa K.A., MacCuspie R.I., Hemmati A., Holbrook R.D. Storage Wars: how citrate-capped silver nanoparticle suspensions are affected by not-so-trivial decisions // J. Nanopart. Res. 2014. V. 16. P. 2339–2353. https://doi.org/ 10.1007/ s11051-014-2339-9