ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-08-25-34

УДК: 535.8

Experimental studies of the influence of loss of measurement data on the quality of reconstruction of a wavefront distorted by atmospheric turbulence using a Shack–Hartmann sensor

For Russian citation (Opticheskii Zhurnal):

Больбасова Л.А., Лукин В.П., Соин Е.Л. Экспериментальные исследования влияния потери данных измерений на качество реконструкции искажённого атмосферной турбулентностью волнового фронта датчиком Шэка–Гартмана // Оптический журнал. 2024. Т. 91. № 8. С. 25–34. http://doi.org/10.17586/1023-5086-2024-91-08-25-34

 

 Bolbasova L.A., Lukin V.P., Soin E.L. Experimental studies of the influence of loss of measurement data on the quality of reconstruction of a wavefront distorted by atmospheric turbulence using a Shack–Hartmann sensor [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 8. P. 25–34. http://doi.org/10.17586/1023-5086-2024-91-08-25-34

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. The wavefront of laser radiation is distorted by atmospheric turbulence. Aim of study. Experimental study of the influence of loss data because of central obstruction and fragmentation of the entrance pupil of the optical system on the reconstruction of the wavefront of laser radiation propagating along a horizontal atmospheric path, distorted by atmospheric turbulence using a Shack–Hartmann sensor. Method. The studies were carried out during the propagation of laser radiation along a horizontal atmospheric path, at various coefficients of central obstruction and fragmentation. The results in terms of Zernike polynomials are analyzed. Main results. The results of experimental studies of the reconstruction of the wavefront of laser radiation, distorted by atmospheric turbulence, using a Schack–Hartmann sensor with fragmentation and central obstruction of the entrance pupil are presented. It is shown that the influence of central obstruction is not significant on wavefront reconstruction; only the underestimation of spherical aberration that occurs may require modification of the adaptive correction algorithm of adaptive optics systems. When the pupil is vignetted, the most values are occurred aberrations of coma. Practical significance. The quality of adaptive optics correcting laser radiation distortions depends on the correctness measurements of wavefront sensor. The results obtained in the study are important in the development of adaptive optical systems for transmitting and focusing laser radiation through the atmosphere.

Keywords:

adaptive optics, atmospheric turbulence, wavefront, aberration, wavefront sensor Shack–Hartmann

Acknowledgements:

 this work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences.

OCIS codes: 010.1080, 010.7350, 110.1080

References:

1. Bolbasova L.A., Lukin V.P. Issues of wavefront tilt measurement // Journal of Optical Technology. 2021. V. 88. № 11. P. 625–629. https://doi.org/10.1364/ JOT.88.000625
2. Volkov M.V., Bogachev V.A., Starikov F.A., Shnyagin R.A. Numerical study of dynamic adaptive phase correction of radiation turbulent distortions and 3. Lukin V.P., Kopylov E.A., Lavrinov V.V., Selin A.A. Methods of image correction formed on horizontal long paths // Proc. SPIE. 2018. V. 10677. P. 106773R-1-8. https://doi.org/10.1117/12.2309327
4. Bolbasova L.A., Gritsuta A.N., Lavrinov V.V., Lukin V.P., Kopylov E.A., Selin A.A., Soin E.L. Design and development adaptive optical system installed on smallaperture telescope with predictive algorithm // Proc. SPIE. 2020. V. 11560. P. 115600K-1-10. https://doi.org/10.1117/12.2571462
5. Banakh V.A., Gordeev E.V., Kuskov V.V., Rostov A.P., Shesternin A.N. Controlling the initial wavefront of a spatially partially coherent beam by the aperture sensing technique based on backscatter signals in the atmosphere: I. Experimental setup // Atmospheric and Oceanic Optics. 2021. V. 34. № 6. P. 625–631. https://doi.org/10.1134/S1024856021060026
6. Mikhelson N.N. Optical telescopes. Theory and construction. Moscow: Nauka, 1976. 512 p.
7. Hakobyan A.V. Aperture shapes and the effectiveness of ground-based large and extremely large telescopes // Monthly Notices of the Royal Astronomical Society. 2020. V. 496. № 4. P. 5414–5422. https://doi.org/10.1093/mnras/staa1792
8. Huang J., Yao L., Wu S., Wang G. Wavefront reconstruction of Shack–Hartmann with under-sampling of sub-apertures // Photonics. 2023. V. 10. № 65. P. 1–14. https://doi.org/10.3390/photonics10010065
9. Kucherenko M.A., Lavrinov V.V., Lavrinova L.N. Reconstruction of a wavefront distorted by atmospheric turbulence with account for optical scheme of the telescope // Optoelectronics, Instrumentation and Data Processing. 2019. V. 55. P. 631–637. http://doi.org/10.3103/S8756699019060153
10. Bonnefond S., Tallon M., Le Louarn M., Madec P.-Y. Wavefront reconstruction with pupil fragmentation: study of a simple case // Proc. SPIE. 2016. V. 9909. P. 990972-1-6. https://doi.org/10.1117/12.2234034
11. Larichev A.V., Iroshnikov N.G. Certificate of state registration of the computer program "Specialized software for image processing". Version 13 (Shah) № 2021619024 data 06/03/2021
12. SHAHQ. Operator's Manual 643.VDASH.62.01.29-01 34 02. 2021. 122 p.
13. Andreeva M.S., Iroshnikov N.G., Koryabin A.B., Larichev A.V., Shmalgauzen V.I. Usage of wavefront sensor for estimation of atmospheric turbulence parameters // Optoelectronics, Instrumentation and Data Processing. 2012. V. 48. № 2. С. 197–204.
14. GOST (Russian National Standard) ISO 15367-2-2012 Laser and laser-related equipment. Test methods for determination of the shape of a laser beam wavefront. Part 2. [in Russian]. Introd. 07/01/13. Moscow: Standards Publ., 2013. 16 p.
15. Noll R.J. Zernike polynomials and atmospheric turbulence // J. Opt. Soc. Am. 1976. V. 66. № 3. P. 207–211.
16. Born M., Wolf E. Principles of optics. London, N.Y., Paris: Pergamon Press Publ., 1970. 808 p.