ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-01-100-111

УДК: 53.06, 57.089

Optical method for rapid diagnosis of kidney disease at an early stage

For Russian citation (Opticheskii Zhurnal):

Давыдов В.В., Проводин Д.С., Вакорина Д.В., Везо О.С. Оптический метод экспресс-диагностики болезни почек на ранней стадии // Оптический журнал. 2025. Т. 92. № 1. С. 100–111. http://doi.org/10.17586/1023-5086-2025-92-01-100-111

 

Davydov V.V., Provodin D.S., Vakorina D.V., Vezo O.S. Optical method for rapid diagnosis of kidney disease at an early stage [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 1. P. 100–111. http://doi.org/10.17586/1023-5086-2025-92-01-100-111

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Obtaining reliable information about the condition of the kidneys from urine samples in real time when establishing a diagnosis and monitoring the effectiveness of drugs using the method developed in the work. Aim of study. Development of a new method for rapid diagnosis of kidney condition in real time based on refractometric measurements of the refractive indices of urine samples. Method. The refractive index measuring of urine samples from one sample at four wavelengths of laser radiation without making changes to the state of the sample (with one device — a mobile refractometer with a measurement error of 0.00005). Main results. The proposed method of kidney condition express monitoring has a reliability high degree, which is confirmed by the results of experimental studies of urine samples and clinical examination of patients in whom abnormalities in kidney function were identified during express monitoring. A design of a mobile refractometer has been developed to implement the new method. Experimental results have been obtained for measuring the refractive index of urine samples, which correspond to patients with early-stage kidney disease at different temperatures. Practical significance. The developed method and devices for its implementation will solve the problems that arise when obtaining reliable information about the condition of the kidneys in real time, both in outpatient centers, clinics, and district hospitals when making a diagnosis or monitoring the effectiveness of drugs during a course of treatment, and in large medical centers.

Keywords:

refractive index, wavelength, measurement error, reliability

OCIS codes: 020.3690

References:

1. Biggeri A., Stoppa G., Facciolo L., et al. All-cause, cardiovascular disease and cancer mortality in the population of a large Italian area contaminated by perfluoroalkyl and polyfluoroalkyl substances (1980–2018) // Environmental Health: A Global Access Science Source. 2024. V. 23. № 1. Р. 42. https://doi.org/10.1186/s12940-024-01074-2
2. Oliveira B., Teixeira B., Magalhães M., et al. Extracorporeal shock wave lithotripsy: Retrospective study on possible predictors of treatment success and revisiting the role of non-contrast-enhanced computer tomography in kidney and ureteral stone disease // Urolithiasis. 2024. V. 52. № 1. Р. 65. https://doi.org/10.1007/s00240-024-01570-7
3. Davydov V.V., Velichko V.I., Dudkin V.I. A nuclear magnetic relaxometer for express testing of the condensed medium conditions // Instruments and Experimental Techniques. 2015. V. 58. № 2. Р. 234–238. https://doi.org/ 10.1134/S0020441215020062
4. Guzenko M.M., Mazing M.S., Zaitseva A.Y. Application of optical analysis methods for noninvasive monitoring of the blood oxygen saturation level // Biophysics. 2023. V. 68. № 2. P. 306–311. https://doi.org/10.3390/jpm13030443
5. Тимченко Е.В., Тимченко П.Е., Писарева Е.В. и др. Оптический анализ костной ткани методом спектроскопии комбинационного рассеяния при экспериментальном остепорозе и его коррекции с помощью аллогенного гидроксиапатита // Оптический журнал. 2020. Т. 87. № 3. С. 37–45.
 Timchenko E.V., Timchenko P.E., Pisareva E.V., et al. Optical analysis of bone tissue by Raman spectroscopy in experimental osteoporosis and its correction using allogeneic hydroxyapatite // J. Opt. Technol. 2020. V. 87. № 3. P. 161–167. https://doi.org/10.1364/JOT. 87.000161
6. Davydov R., Zaitceva A., Isakova D., et al. New methodology of human health express diagnostics based on pulse wave measurements and occlusion test // J. Personalized Medicine. 2023. V. 13. № 3. Р. 443. https://doi.org/ 10.3390/jpm13030443
7. Вакс В.Л., Домрачева Е.Г., Черняева М.Б. и др. Применение метода терагерцевой газовой спектроскопии высокого разрешения для анализа состава продуктов термического разложения тканей кист околоносовых пазух // Оптический журнал. 2021. Т. 88. № 3. С. 26–32.
 Vaks V.L., Domracheva E.G., Chernyaeva M.B., et al. Application of high-resolution terahertz gas spectroscopy to the compositional analysis of the thermal decomposition products of paranasal sinus cyst tissue // J. Opt. Technol. 2021. V. 88. № 3. P. 166–168. https:// doi.org/ 10.1364/JOT.88.000166
8. Zaitceva A.Yu., Mazing M.S., Akacevich P.V., et al. Sensor intelligent systems for monitoring the oxygen status of human tissues under functional loads // J. Pharmaceutical Negative Results. 2022. V. 13. № 1. P. 6–13. https://doi.org/ 10.47750/pnr.2022.13.01.002
9. Муравьева С.В., Козуб К.Е., Пронин С.В. Оптические и электрофизиологические методы оценки функционального состояния нейронных сетей зрительной системы // Оптический журнал. 2021. Т. 88. № 12. С. 42–49.
 Murav'еva S.V., Kozub K.E., Pronin S.V. Optical and electrophysiological techniques for functional assessment of vision system neuronal networks // J. Opt. Technol. 2021. V. 88. № 12. P. 710–715. https://doi.org/ 10.1364/JOT.88.000710
10. Mielke N., Barghouth M.H., Fietz A.-K., et al. Effect modification of polypharmacy on incident frailty by chronic kidney disease in older adults // BMC Geriatrics. 2024. V. 24. № 1. Р. 335. https://doi.org/10.1186/s12877-024-04887-5
11. Iakovleva A.V., Verlov N.A., Zaleskiy M.G., et al. Pathogenic role of posttranslational isoforms of uromodulin // Biophysics. 2023. V. 68. № 3. P. 489–494. https://doi.org/10.1134/S0006350923030247
12. Hong H., He Y., Gong Z., et al. The association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and kidney stones: A cross-sectional study // Lipids in Health and Disease. 2024. V. 23. № 1. Р. 102. https://doi.org/10.1186/s12944-024-02089-x
13. Смирнова В.И., Лапин С.В., Лебедев Д.Г. и др. Валидация метода инфракрасной спектроскопии для анализа состава мочевых конкрементов // Клиническая лабораторная диагностика. 2021. Т. 66. № 12. С. 733–738. https://dx.doi.org/10.51620/0869-2084-2021-66-12-733-738
 Smirnova V.I., Lapin S.V., Lebedev D.G., et al. Validation of the infrared spectroscopy method for analysis of the composition of urine concretes [in Russian] // Clinical Laboratory Diagnostics. 2021. V. 66. № 12. Р. 733–738. https://doi.org/10.51620/0869-2084-2021-66-12-733-738
14. Vakorina D.V., Stepanenkov G.V. A new method of express control of early-stage kidney damage // Proc. 2024 Conf. Young Researchers in Electrical and Electronic Engineering (ElCon). St. Petersburg, Russia. January 29–31, 2024. V. 2024. P. 999–1002. https://doi.org/10.1109/ElCon61730.2024.10468215
15. Hunsaker J.H., Wyness S.P., Snowa T.M., et al. Clinical performance evaluation of total protein measurement by digital refractometry and characterization of non-protein solute interferences // Practical Laboratory Medicine. 2016. V. 6. P. 14–24. https://doi.org/ 10.1016/j.plabm.2016.08.001
16. Wyness S.P., Hunsaker J.H., Snowa T.M., et al. Evaluation and analytical validation of a handheld digital refractometer for urine specific gravity measurement // Practical Laboratory Medicine. 2016. V. 5. P. 65–74. https://doi.org/ 10.1016/j.plabm.2016.06.001
17. Kazanskiy N.L., Butt M.A., Degtyarev S.A., et al. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index // Computer Opt. 2020. V. 44. № 3. Р. 295–318. https:// doi.org/ 10.18287/2412-6179-CO-743
18. Davydov V.V., Vakorina D.V., Stepanenkov G.V. A new optical method for control in visible light of volatile hydrocarbon media and their mixtures using data from lightshadow boundary images // Computer Opt. 2024. V. 48. № 1. Р. 93–101. https://doi.org/10.18287/2412-CO-1341
19. Gogoi P., Valan J.A. Privacy-preserving predictive modeling for early detection of chronic kidney disease // Network Modeling Analysis in Health Informatics and Bioinformatics. 2024. V. 13. № 1. Р. 16. https://doi.org/10.1007/s13721-024-00452-7
20. Jairoun A.A., Al-Hemyari S.S., Shahwan M., et al. Community pharmacist-led point-of-care eGFR screening: Early detection of chronic kidney disease in highrisk patients // Sci. Rep. 2024. V. 14. № 1. P. 7284. https://doi.org/10.1038/s41598-024-56765-0

21. Mazing M.S., Zaitceva A.Y., Davydov R.V. Application of the Kohonen neural network for monitoring tissue oxygen supply under hypoxic conditions // J. Phys.: Conf. Ser. 2021. V. 2086. № 1. Р. 012116. https://doi.org/ 10.1088/1742-6596/2086/1/012116
22. Bratchenko L.A., Al-Sammarraie S.Z., Tupikova E.N., et al. Analyzing the serum of hemodialysis patients with end-stage chronic kidney disease by means of the combination of SERS and machine learning // Biomedical Opt. Exp. 2022. V. 13. № 9. Р. 4926–4938. https://doi.org/ 10.1364/BOE.455549
23. Bratchenko L.A., Bratchenko I.A., Khristoforova Y.A., et al. Raman spectroscopy of human skin for kidney failure detection // J. Biophotonics. 2021. V. 14. № 2. Р. e202000360. https://doi.org/ 10.1002/jbio.202000360
24. Давыдов В.В., Мязин Н.С., Давыдова Т.И. Неразрушающий метод экспресс-контроля состояния конденсированных сред для экологического мониторинга // Дефектоскопия. 2017. № 7. С. 52–61.
 Davydov V.V., Myazin N.S., Davydova T.I. A nondestructive method for express testing of condensed media in ecological monitoring // Russian Journal of Nondestructive Testing. 2017. V. 53. № 7. Р. 520–529. https://doi.org/ 10.1134/S106183091707004X
25. Irfan M., Khan Y., Rehman A.U., et al. Plasmonic refractive index and temperature sensor based on graphene and LiNbO3 // Sensors. 2020. V. 22. № 20. Р. 7790–7802. https://doi.org/ 10.3390/s22207790
26. Morales-Luna G., Herrera-Domínguez M., Pisano E., et al. Plasmonic biosensor based on an effective medium theory as a simple tool to predict and analyze refractive index changes // Opt. and Laser Technol. 2020. V. 131. P. 106332. https://doi.org/ 10.1016/j.optlastec. 2020.106332