DOI: 10.17586/1023-5086-2025-92-01-13-20
УДК: 602.17, 535.45
The atmospheric discharges influence on the rate of cryptographic key generation in quantum communication systems
Белова О.С., Болотов Д.В., Бушуев Э.Ю., Грычкин С.Е., Казанцев С.Ю., Казиева Т.В., Колесников О.В., Строганова Е.П. Влияние атмосферных разрядов на скорость генерации криптографического ключа в системах квантовой коммуникации // Оптический журнал. 2025. Т. 92. № 1. С. 13–20. http://doi.org/10.17586/1023-5086-2025-92-01-13-20
Belova O.S., Bolotov D.V., Bushuev E.Yu., Grychkin S.E., Kazantsev S.Yu., Kazieva T.V., Kolesnikov O.V., Stroganova E.P. The atmospheric discharges influence on the rate of cryptographic key generation in quantum communication systems [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 1. P. 13–20. http://doi.org/10.17586/1023-5086-2025-92-01-13-20
Subject of study. Technology of quantum key distribution in fiber-optic communication lines under the influence of electromagnetic fields generated by atmospheric discharges. Aim of study. Creation of a stand for testing experimental techniques for studying the atmospheric discharges influence on the transmission of a quantum key in fiber-optic communication lines. Method. Experimental studies of the characteristics of a quantum communication channel under conditions of exposure of a coil with an optical fiber to a magnetic field from a pulsed current. Main results. An experimental stand has been created and methods have been developed to evaluate the influence of magnetic fields arising from atmospheric discharges (lightning) on the transmission speed of a quantum key in fiber-optic communication lines. It has been shown that quantum key distribution blocks, which implement the BB84 phase-encoding protocol, operate stably when the optical cable is exposed to alternating magnetic fields of up to 1.2 mT. However, the very fact of exposure to magnetic fields above 0.8 mT can be detected by a systematic decrease in the quantum transmission rate key and increase in the level of quantum errors QBER by 0.5–1%. Practical significance. The created laboratory bench and methods make it possible to test various optical cables through which qubits are transmitted for the effects of magnetic fields. Fiber-optic networks through which qubits are transmitted can serve as a distributed lightning sensor; on a segment of the optical network where a lightning discharge generates strong magnetic fields, an increase in the level of quantum errors and a decrease in the rate of quantum key formation will be recorded.
: quantum communications, fiber-optic communication lines, lightning, atmospheric discharges, quantum key distribution
OCIS codes: 060.5530, 050.1590, 060.5625
References:1. Сукачев Д.Д. Протяжённые квантовые сети // УФН. 2021. Т. 191. № 10. С. 1077–1094. https://doi.org/10.3367/UFNr.2020.11.038888
Sukachev D.D. Large quantum networks // Physics–Uspekhi 2021. V. 64. № 10. P. 1021–1037. https://doi.org/10.3367/UFNe.2020.11.038888
2. Sharma P., Agrawal A., Bhatia V., et al. Quantum key distribution secured optical networks: A survey // IEEE Open J. Commun. Soc. 2021. V. 2. P. 2049–2083. https://doi.org/10.1109/OJCOMS.2021.3106659
3. Егорова О., Ерохин К., Журавлев С. и др. Применение многосердцевинных оптических волокон для квантовых сетей // Первая миля. 2022. № 8(108). С. 44–51. https://doi.org/10.22184/2070-8963.2022. 108.8.44.51
Egorova O., Erokhin K., Zhuravlev S., et al. Application of multicore optical fibers for quantum networks [in Russian] // Last Mile. 2022. № 8(108). P. 44–51. https://doi.org/10.22184/2070-8963.2022.108.8.44.51
4. Goncharov R., Vorontsova I., Kirichenko D., et al. The rationale for the optimal continuous-variable quantum key distribution protocol // Optics. 2022. V. 3. № 4. P. 338–351. https://doi.org/10.3390/opt3040030
5. Миронов Ю.Б., Казанцев С.Ю., Шаховой Р.А. и др. Анализ перспектив развития источников одиночных фотонов в системах квантового распределения ключей // Наукоемкие технологии в космических исследованиях Земли. 2021. Т. 13. № 6. С. 22–33. https://doi.org/10.36724/2409-5419-2021-13-6-22-33
Mironov Yu.B., Kazantsev S.Yu., Shakhovoy R.A., et al. Analysis of single photon sources with quantum key distribution systems development prospects [in Russian] // H&ES Reserch. 2021. V. 13. № 6. P. 22–33. https://doi.org/10.36724/2409-5419-2021-13-6-22-33
6. Martin V., Brito J.P., Escribano C., et al. Quantum technologies in the telecommunications industry // EPJ Quant. Technol. 2021. V. 8. № 1. P. 19. https://doi.org/10.1140/epjqt/s40507-021-00108-9
7. Chen J.P., Zhang C., Liu Y., et al. Quantum key distribution over 658 km fiber with distributed vibration sensing // Phys. Rev. Lett. 2022. V. 128. № 18. P. 180502. https://doi.org/10.1103/PhysRevLett.128. 180502
8. Горбатов Д.В., Дорожкин А.Н., Игуменов А.Ю. и др. Изменение поляризации света при ударе молнии: зоны изотропности анизотропного оптического волокна // Квант. электрон. 2022. Т. 52. № 10. С. 923–928.
Gorbatov D.V., Dorozhkin A.N., Igumenov A.Yu., et al. Polarisation change of light during a lightning strike: Isotropic zones of an anisotropic optical fibre [in Russian] // Bull. Lebedev Phys. Inst. 2023. V. 50. № 2. P. S203–S212. https://doi.org/10.3103/ S1068335623140075
9. Bolotov D.V., Kazantsev S.Y., Pchelkina N.V., et al. Modular facility of quantum key distribution in a free space // Wave Electronics and its Application in Information and Telecommunication Systems. 2023. V. 6. № 1. P. 50–54. https://doi.org/10.1109/WECONF57201. 2023.10148017
10. Белова О.С., Болотов Д.В., Казанцев С.Ю. и др. Влияние электрического поля от облака заряженного водного аэрозоля на волоконно-оптические линии связи // Краткие сообщения по физике ФИАН. 2023. Т. 50. № 10. С. 21–28.
Belova O.S., Bolotov D.V., Kazantsev S.Y., et al. Experimental study of the effect of electric fields of thunderclouds on fiber-optic communication lines // Bull. Lebedev Phys. Inst. 2023. V. 50. № 9. P. 429–433. https:// doi.org/10.3103/S1068335623100032
11. Charlton D., Clarke S., Doucet D., et al. Field measurements of SOP transients in OPGW, with time and location correlation to lightning strikes // Opt. Exp. 2017. V. 25. № 9. P. 9689–9696. https://doi.org/10.1364/ OE.25.009689
12. Соколов С.А. Воздействие внешних электромагнитных полей на оптические кабели связи и гибридные линии. М.: Горячая линия-Телеком, 2018. 214 с.
Sokolov S.A. The effect of external electromagnetic fields on optical communication cables and hybrid lines [in Russian]. Moscow: "Goryachaya liniya-telecom" Press., 2018. 214 p.
13. Lysov N., Temnikov A., Chernensky L., et al. The physical experimental modelling of the formation processes of upward discharges from grounded objects in the artificial thunderstorm cell’s electric field // Atmosphere. 2022. V. 13. № 8. P. 1339. https://doi.org/ 10.3390/atmos13081339
14. Belova O.S., Temnikov A.G., Kazantsev S.Y., et al. Physical modeling of the effects of atmospheric electricity and lightning on optical distributed telecommunication systems // Russ. Electr. Engin. 2023. V. 94. № 8. P. 585–589. https://doi.org/10.3103/S1068371223080047
15. Грычкин С.Е., Строганова Е.П. Сертификация и испытания телекоммуникационного оборудования, предназначенного для применения на объектах ПАО ГАЗПРОМ // Технологии информационного общества. 2019. С. 12–14.
Grychkin S.E., Stroganova E.P. Certification and testing of telecommunication equipment intended for use at the facilities of PJSC GAZPROM [in Russian] // Information Society Technologies. 2019. P. 12–14.
16. Rodimin V.E., Kiktenko E.O., Usova V.V., et al. Modular quantum key distribution setup for research and development applications // J. Russ. Laser Res. 2019. V. 40. № 3. P. 221–229. https://doi.org/10.1007/s10946-019-09793-5
17. Rabenandrasana J., Bachus A.V., Kazieva T.V., et al. Development of a metrological system for measuring the characteristics of single photon detectors based on an educational platform EMQOS 1.0 // 2023 Systems of Signals Generating and Proc. in the Field of on Board Commun. Moscow, Russian Federation, 2023. P. 1–4. https://doi.org/10.1109/IEEECONF56737.2023.10092001
18. Ding Y.Y., Chen H., Wang S., et al. Polarization variations in installed fibers and their influence on quantum key distribution systems // Opt. Exp. 2017. V. 25. № 10. P. 27923–27936. https://doi.org/10.1364/OE.25.027923