ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-10-16-25

УДК: 535.417.22, 544.25

Spectral shift of microresonator modes with a photo-controlled cholesteric defect layer

For Russian citation (Opticheskii Zhurnal):

Крахалев М.Н., Абдуллаев А.С., Зуев А.С., Гуняков В.А., Тимофеев И.В., Зырянов В.Я. Спектральный сдвиг мод микрорезонатора с фотоуправляемым холестерическим дефектным слоем // Оптический журнал. 2025. Т. 92. № 10. С. 16–25. http://doi.org/10.17586/1023-5086-2025-92-10-16-25

Krakhalev M.N., Abdullaev A.S., Zuev A.S., Gunyakov V.A., Timofeev I.V., Zyryanov V.Ya. Spectral shift of microresonator modes with a photo-controlled cholesteric defect layer [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 10. P. 16–25. http://doi.org/10.17586/1023-5086-2025-92-10-16-25

For citation (Journal of Optical Technology):
-
Abstract:

Subject of research. Fabry–Perot microresonators with a photosensitive cholesteric as a defect layer are investigated. The pitch of the cholesteric helix is changed by ultraviolet or blue light. Planar-tangential boundary conditions are set for the cholesteric, thus enabling the continuous variation in the twist angle of the structure. Purpose of the work is to establish the patterns of the change in polarization and spectral characteristics of microresonator modes on the twist angle of the planar cholesteric structure. Methods. The microresonators are investigated experimentally and by numerical simulations using the Berreman matrix method generalized for the case of anisotropic medium. Studies are performed for the microresonator cavity thicknesses of 3.63 µm and 7.68 µm. Main results. It is shown that the re- and ro-modes of the microresonator are controlled with the same efficiency by changing the twist angle of the cholesteric. As the twist angle is increased, the re-modes shift to a red range of the spectrum, while the ro-modes exhibit a blue spectral shift. The magnitude of the spectral shift of modes is limited by the phenomenon of anticrossing of modes of neighboring series appearing in the Gooch–Tarry maximum, where the mode type changes from re- to ro- and vice versa. The position of the Gooch–Tarry maximum exhibits a red spectral shift at an increasing of cholesteric twist angle, the rate of the spectral shift rises with reducing the liquid crystal layer thickness and increasing light wavelength. Practical significance. The obtained results can be promising for the development of photo-controlled photonic systems with improved optical characteristics.

Keywords:

Fabry–Perot cavity, cholesteric, photocontrol, twisting of orientational structure, light polarization

Acknowledgements:
this research was funded by Russian Science Foundation, Grant № 24-12-00236, https://rscf.ru/en/project/24-12-00236/

OCIS codes: 230.5750, 160.3710, 160.5335

References:
  1. Optical microcavities / Ed. Vahala K. Singapore: World Scientific, 2004. 502 p. https://doi.org/10.1142/5485
  2. Chen J., Song G., Cong S., Zhao Z. Resonant-cavity-enhanced electrochromic materials and devices // Adv. Mater. 2023. V. 35. Is. 47. P. 2300179. https://doi.org/10.1002/adma.202300179
  3. Patel J.S., Saifi M.A., Berreman D.W., Chinlon Lin, Andreadakis N., Lee S.D. Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon // Appl. Phys. Lett. 1990. V. 57. № 17. P. 1718–1720. https://doi.org/10.1063/1.104045
  4. Abuleil M., Abdulhalim I. Narrowband multispectral liquid crystal tunable filter // Optics Letters. 2016. V. 41. № 9. P. 1957–1960. https://doi.org/10.1364/OL.41.001957
  5. Ozaki R., Matsuhisa Y., Ozaki M., Yoshino K. Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer // Appl. Phys. Lett. 2004. V. 84. № 11. P. 1844–1846. https://doi.org/10.1063/1.1686891
  6. Blinov L. Structure and properties of liquid crystals // Topics in Applied Physics. Netherlands: Springer, 2010. 439 p.
  7. Yang D.K., Wu S.T. Fundamentals of liquid crystal devices. 2nd ed. Chichester: John Wiley & Sons, 2014. 592 p.
  8. Mansha S., Moitra P., Xu X., Mass T.W.W., Maruthiyodan V., Liang X., Li S.-Q., Paniagua-Domingues R., Kuznetsov A.I. High resolution multispectral spatial light modulators based on tunable Fabry–Perot nanocavities // Light: Sci. Appl. 2022. V. 11. P. 141. https://doi.org/10.1038/s41377-022-00832-6
  9. Ozaki R., Ozaki M., Yoshino K. Electrically rotatable polarizer using one-dimensional photonic crystal with a nematic liquid crystal defect layer // Crystals. 2015. V. 5. Is. 3. P. 394–404. https://doi.org/10.3390/cryst5030394
  10. Krasnov A.I., Pankin P.S., Buzin D.S., Romanenko G.A., Sutormin V.S., Zelenov F.V., Masyugin A.N., Volochaev M.N., Vetrov S.Ya., Timofeev I.V. Voltage-tunable Q factor in a photonic crystal microcavity // Opt. Lett. 2023. V. 48. Is. 7. P. 1666–1669. https://doi.org/10.1364/OL.479431
  11. Huang Y., Wu T.X., Wu S.-T. Simulations of liquid-crystal Fabry–Perot etalons by an improved 4×4 matrix method // J. Appl. Phys. 2003. V. 93. Is. 5. P. 2490–2495. https://doi.org/10.1063/1.1542652
  12. Zyryanov V.Ya., Myslivets S.A., Gunyakov V.A., Parshin A.M., Arkhipkin V.G., Shabanov V.F., Wei Lee. Magnetic-field tunable defect modes in a photonic-crystal/liquid crystal cell // Optics Express. 2010. V. 18. № 2. P. 1283–1288. https://doi.org/10.1364/OE.18.001283
  13. Jisha C.P., Alberucci A., Beeckman J., Nolte S. Self-trapping of light using the Pancharatnam–Berry phase // Phys. Rev. X. 2019. V. 9. Is. 2. P. 021051. https://doi.org/10.1103/PhysRevX.9.021051
  14. Timofeev I.V., Gunyakov V.A., Sutormin V.S., Myslivets S.A., Arkhipkin V.G., Vetrov S.Y., Lee W., Zyryanov V.Y. Geometric phase and o-mode blueshift in a chiral anisotropic medium inside a Fabry–Pérot cavity // Phys. Rev. E. 2015. V. 92. Is. 5. P. 052504. https://doi.org/10.1103/PhysRevE.92.052504
  15. Zhuang Z., Patel J.S. Behavior of cholesteric liquid crystals in a Fabry–Pérot cavity // Opt. Lett. 1999. V. 24. Is. 23. P. 1759–1761. https://doi.org/10.1364/OL.24.001759
  16. Li Y., Wang M., White T.J., Bunning T.J., Li Q. Azoarenes with opposite chiral configurations: Light-driven reversible handedness inversion in self-organized helical superstructures // Angew. Chem. Int. Ed. 2013. V. 52. Is. 34. P. 8925–8929. http://doi.org/10.1002/anie.201303786
  17. Chen P., Ma L.-L., Hu W., Shen Z.-X., Bisoyi H.K., Wu S.-B., Ge S.-J., Li Q., Lu Y.-Q. Chirality invertible superstructure mediated active planar optics // Nat. Commun. 2019. V. 10. Is. 1. P. 2518. https://doi.org/10.1038/s41467-019-10538-w
  18. Abdullaev A.S., Kostikov D.A., Krakhalev M.N., Zyryanov V.Y. Complete light polarization control using a chiral-nematic cell with tangential-conical boundary conditions // Opt. Mat. 2023. V. 146. P. 114521. https://doi.org/10.1016/j.optmat.2023.114521
  19. Hao L., Liang F., Jing H., Xiang Y., Salamon P., Eber N., Buka A., Kohout M., Chen J., Pei Y. Control of light polarization by optically induced-chirality in photosensitive nematic fluids // Opt. Express. 2024. V. 32. Is. 8. P. 13965–13977. https://doi.org/10.1364/OE.522820
  20. Ryabchun A., Bobrovsky A., Stumpe J., Shibaev V. Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch // Adv. Opt. Mat. 2015. V. 3. Is. 9. P. 1273–1279. https://doi.org/10.1002/adom.201500159
  21. Chepeleva D.S., Yakovleva A.S., Murauski A.A., Kukhta I.N., Muravsky A.A. Phototunable selective reflection of cholesteric liquid crystals // Doklady BGUIR. 2019. V. 7. Is. 125. P. 28–31. http://doi.org/10.35596/1729-7648-2019-125-7-28-31
  22. Gunyakov V.A., Timofeev I.V., Krakhalev M.N., Lee W., Zyryanov V.Y. Electric field-controlled transformation of the eigenmodes in a twisted-nematic Fabry–Pérot cavity // Scientific Reports. 2018. V. 8. Is. 1. P. 16869. https://doi.org/10.1038/s41598-018-35095-y
  23. Berreman D.W. Optics in stratified and anisotropic media: 4×4-matrix formulation // J. Opt. Soc. Am. 1972. V. 62. P. 502–510. https://doi.org/10.1364/JOSA.62.000502
  24. Malitson I.H. Interspecimen comparison of the refractive index of fused silica // J. Opt. Soc. Am. 1965. V. 55. Is. 10. P. 1205–1209. https://doi.org/10.1364/JOSA.55.001205
  25. Абдуллаев А.С., Крахалев М.Н., Зырянов В.Я. Фотоиндуцированная трансформация ориентационной структуры хирального нематика с планарно-коническим сцеплением // Жидк. крист. и их практич. использ. 2024. Т. 24. № 1. С. 90–95. https://doi.org/10.18083/LCAppl.2024.1.90

    Abdullaev A.S., Krakhalev M.N., Zyryanov V.Y. Photoinduced transformation of the orientational structure of a chiral nematic under planar-conical anchoring // Liq. Cryst. and their Appl. 2024. V. 24. Is. 1. P. 90–95 (in Russ.). https://doi.org/10.18083/LCAppl.2024.1.90

 

  1. Patel S., Silberberg Y. Anticrossing of polarization modes in liquid-crystal étalons // Opt. Lett. 1991. V. 16. Is. 13. P. 1049–1051. https://doi.org/10.1364/OL.16.001049
  2. Ohtera Y., Yoda H., Kawakami S. Analysis of twisted nematic liquid crystal Fabry–Pérot interferometer (TN-FPI) filter based on the coupled mode theory // Optical and Quantum Electronics. 2000. V. 32. P. 147–167. https://doi.org/10.1023/A:1007075429333