DOI: 10.17586/1023-5086-2025-92-11-14-22
УДК: 535.3
Method for determining the parameters of gradient proton-exchange waveguides in single crystals and solid solutions
Сосунов А.В., Петухов М.И., Мололкин A.A., Фахртдинов Р.Р., Савельев Е.Д., Шур В.Я. Метод определения параметров градиентных протонообменных волноводов в монокристаллах и твердых растворах // Оптический журнал. 2025. Т. 92. № 11. С. 14–22. http://doi.org/10.17586/1023-5086-2025-92-11-14-22
Sosunov A.V., Petukhov M.I., Mololkin A.A., Fakhrtdinov R.R., Savelyev E.D., Shur V.Ya. Method for determining the parameters of gradient channel proton-exchange waveguides in single crystals and solid solutions [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 11. P. 14–22. http://doi.org/10.17586/1023-5086-2025-92-11-14-22
Scope of research. Determination of gradient waveguides parameters required for the production of integrated optical circuits with low optical losses. Purpose of the work. Development of a new approach for determining all the main parameters of gradient proton exchange waveguides in single crystals and solid solutions. Method. Confocal Raman microscopy, prism coupling method and classical transport equation were used to reconstruct the profiles of gradient waveguides. Main results. Gradient profiles of proton-exchange waveguides were reconstructed using the measuring of the OH-group line in the Raman spectrum in crystals of lithium niobate and lithium niobate-tantalate solid solution of X- and Z-cut. The profiles are in good agreement with the profiles obtained by the prism coupling method and diffusion theory. The refractive index increment can be determined from the calibration plot calculated in the work. This simple method allows to estimate all the main parameters of proton-exchange waveguides at any point. This is not available for other methods. Practical significance. The results can be used for fast and non-destructive control of the parameters of gradient proton-exchange waveguides in integrated photonics devices.
lithium niobate, lithium niobate-tantalate solid solutions, proton exchange, optical waveguide, confocal Raman microscopy
Acknowledgements:this work was supported by the Russian Science Foundation and Ministry of Education and Science of the Perm Region (project № 24-22-20097). Experimental samples of lithium niobate-tantalate solid solutions were prepared during the projects of state assigned [grant № 075-00295-25-00] and [grant № FSME-2023-0003]. The authors thank the Ural Center “Modern Nanotechnologies” of UrFU for confocal Raman microscopy measurements.
OCIS codes: 130.2790
References:- Du Y., Pang Z., Zou Y., et al. Proton exchange-enhanced surface activated bonding for facile fabrication of monolithic lithium niobate microfluidic chips // Chem. Eng. J. 2024. V. 496. P. 154046. https://doi.org/10.1016/j.cej.2024.154046
- Cai L., Han S., Hu H. Waveguides in single-crystal lithium niobate thin film by proton exchange // Opt. Exp. 2015. V. 23. P. 1240–1248. https://doi.org/10.1364/OE.23.001240
- Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications // Appl. Phys. Rev. 2015. V. 2. P. 040603. https://doi.org/10.1063/1.4931601
- Karagöz E., Aşık F.Y., Gökkavas M., et al. Reduction in temperature-dependent fiber-optic gyroscope bias drift by using multifunctional integrated optical chip fabricated on pre-annealed LiNbO3 // Photonics. 2024. V. 11. P. 1057. https://doi.org/10.3390/photonics11111057
- Savelyev E., Akhmatkhanov A., Tronche H., et al. Kinetics of the domain structure in uniform electric field in LiNbO3 with surface layer modified by soft proton exchange // Phys. Status Solidi RRL. 2024. V. 18. P. 2300420. https://doi.org/10.1002/pssr.202300420
- Bashir U., Klimm D., Rüsing M., et al. Evaluation and thermodynamic optimization of phase diagram of lithium niobate tantalate solid solutions // J. Mater. Sci. 2024. V. 59. P. 12305. https://doi.org/10.1007/s10853-024-09932-7
- Kofahl C., Dörrer L., Wulfmeier H., et al. Hydrogen diffusion in Li(Nb,Ta)O3 single crystals probed by infrared spectroscopy and secondary ion mass spectrometry // Chem. Mater. 2024. V. 36(3). P. 1639. https://doi.org/10.1021/acs.chemmater.3c02984
- Sosunov A.V., Petukhov I.V., Kornilicyn A.R., et al. Structure and properties of proton exchange layers in lithium niobate-tantalate solid solutions // Solid State Ionics. 2024. V. 417. P. 116692. https://doi.org/10.1016/j.ssi.2024.116692
- White J.M., Heidrich P.F. Optical waveguide refractive index profiles determined from measurement of mode indices: A simple analysis // Appl. Opt. 1976. V. 15. № 1. P. 151. https://doi.org/10.1364/AO.15.000151
- Chiang K. Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes // J. Light. Technol. 1985. V. 3. № 2. P. 385. https://doi:10.1109/JLT.1985.1074194
- Свистунов Д.В. Модификация методики определения максимального показателя преломления в градиентном волноводе // Оптический журнал. 2015. Т. 82. № 1. С. 3–8.
Svistunov D.V. Modification of a technique for determining the maximum refractive index in a gradient waveguide // J. Opt. Technol. 2015. V. 82. P. 1. https://doi.org/10.1364/JOT.82.000001
- Колосовский Е.А., Петров Д.В., Царев А.В. Численный метод восстановления профиля показателя преломления диффузных волноводов // Квант. электрон. 1981. Т. 8. № 12. С. 2557–2568.
Kolosovskiĭ E.A., Petrov D.V., Tsarev A.V. Numerical method for the reconstruction of the refractive index profile of diffused waveguides // Sov. J. Quant. Electron. 1981. V. 11. P. 1560. https://doi.org/10.1070/QE1981v011n12ABEH008650]
- Lenzini F., Kasture S., Haylock B., et al. Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate // Opt. Exp. 2015. V. 23. P. 1748. https://doi.org/10.1364/OE.23.001748
- Vohra S.T., Mickelson A.R., Asher S.E. Diffusion characteristics and waveguiding properties of proton exchanged and annealed LiNbO3 channel waveguides // J. Appl. Phys. 1989. V. 66. P. 5161. https://doi.org/10.1063/1.343751
- Neradovskiy M., Tronche H., Chezganov D.S., et al. Nonlinear characterization of waveguide index profile: Application to ion-exchanged LiNbO3 // J. Light. Tech. 2021. V. 39(14). P. 4695–4699. https://doi:10.1109/JLT.2021.3077637
- Kostritskii S.M., Korkishko Y.N., Fedorov V.A., et al. Phase composition and electro-optic properties of proton-exchanged waveguides in lithium niobate crystals // J. Appl. Spectrosc. 2015. V. 82. P. 234. https://doi.org/10.1007/s10812-015-0091-2
- Roshchupkin D.V., Emelin E., Plotitcina E., et.al. Single crystals of ferroelectric lithium niobate-tantalate LiNb1–xTaxO3 solid solutions for high-temperature sensor and actuator applications // Acta Crystallographica. Section B: Structural Sci. 2020. V. 76. P. 1071. https://doi.org/10.1107/S2052520620014390
- Roshchupkin D., Fakhrtdinov R., Redkin B., et al. Growth of ferroelectric lithium niobate-tantalate LiNb(1–x)TaxO3 crystals // J. Cryst. Growth. 2023. V. 621. P. 127377. https://doi.org/10.1016/j.jcrysgro.2023.127377
- Першин С.М. Спектроскопия комбинационного рассеяния колебаний OH-групп структурных комплексов жидкой воды // Опт. и спектроск. 2005. Т. 98. № 4. С. 594–605.
Pershin S.M. Raman spectroscopy of the OH group vibrations in structural complexes of liquid water // Opt. Spectrosc. 2005. V. 98. P. 543. https://doi.org/10.1134/1.1914890]
- Galinetto P., Marinone M., Grando D., et al. Micro-Raman analysis on LiNbO3 substrates and surfaces: Compositional homogeneity and effects of etching and polishing processes on structural properties // Opt. Laser Eng. 2007. V. 45. P. 380. https://doi.org/10.1016/j.optlaseng.2005.05.007
- Schmidt N., Betzler K., Grabs M., et al. Spatially resolved second harmonic generation investigations of proton induced refractive index changes in LiNbO3 // J. Appl. Phys. 1979. V. 50. P. 3063. http://doi.org/10.1063/1.343018
- Petukhov I.V., Sosunov A.V., Kichigin V.I., et al. Visualization of κ1-phase in proton-exchange waveguides on the surface of lithium niobate crystal // Ferroelectrics. 2023. V. 605(1). P. 67. https://doi.org/10.1080/00150193.2023.2169011
- Korkishko Yu.N., Fedorov V.A. Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides // J. Appl. Phys. 1997. V. 82. P. 1010–1017. https://doi.org/10.1063/1.365864
ru