ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-11-3-13

УДК: 535.015, 535.36

Analysis of radiation scattering by periodic structure of micro cavities in a multimode optical waveguide

For Russian citation (Opticheskii Zhurnal):

Петухова А.Ю., Перминов А.В., Конин Ю.А., Напарин М.А. Анализ рассеяния излучения периодической структурой микрополостей в многомодовом оптическом волноводе // Оптический журнал. 2025. Т. 92. № 11. С. 3–13. http://doi.org/10.17586/1023-5086-2025-92-11-3-13

 

Petukhova A.Yu., Perminov A.V., Konin Yu.A., Naparin M.A. Analysis of radiation scattering by a periodic structure of microcavities in a multimode optical waveguide [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 11. P. 3–13. http://doi.org/10.17586/1023-5086-2025-92-11-3-13

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Optical radiation scattered by a periodic micro cavity structure formed in a planar optical waveguide simulating a 62.5/125 μm multimode fiber. Aim of study. Obtaining the distribution of the optical radiation scattered power from a periodic structure of bullet-shaped microcavities on the lateral surface of a flat waveguide based on mathematical modeling, creating a method for assessing the scattering elements efficiency and obtaining the values of the microcavity structure geometric parameters at which the greatest uniformity of scattered radiation is achieved. Method. Mathematical modelling of scattering on a periodic radiation structure was performed in the COMSOL Multyphysics package. The model assumes the possibility of varying the size and mutual arrangement of micro cavities. Main results. Power distributions of scattered radiation with a wavelength of 1310 nm from the side surface of the waveguide were obtained. It is shown that the size and relative location of microcavities significantly affect the power distribution of scattered radiation. A method for estimating the uniformity of the distribution of scattered power along the waveguide is proposed. Practical significance. The results are applicable to a multimode optical fiber with a periodic structure of microcavities that scatters laser radiation. Such a fiber can be used as a source of radiation for medical purposes. Periodic structures can be applied as a sensing element for fiber optic sensors. The results are applicable for the development of diffusers with the most uniform scattered radiation pattern.

Keywords:

optical waveguide, periodic structure of micro cavities, radiation scattering, multimode fiber, bullet-shaped micro cavities

Acknowledgements:
 the research was supported by the grant of the Russian Science Foundation № 23-21-00169

OCIS codes: 290.0290, 010.1310

References:

1. Буфетов И.А., Дианов Е.М. Оптический разряд в волоконных световодах // УФН. 2005. Т. 175. № 1. С. 100–103.  https://doi.org/10.3367/UFNr.0175.200501g.0100
Bufetov I. A., Dianov E.M. Optical discharge in optical fibers // Physics–Uspekhi. 2005. V. 48. № 1. P. 91–94. https://doi.org/10.1070/PU2005v048n01ABEH002081
2. Shuto Y. Fiber fuse phenomenon. 3rd ed. Osaka, Japan: Design Egg, Inc, 2021. 370 р.
3. Shuto Y., Yanagi S., Asakawa S., et al. Fiber fuse phenomenon in step-index single-mode optical fibers // IEEE J. Quant. Electron. 2004. V. 40. № 8. P. 1113–1121.
https://doi.org/10.1109/JQE.2004.831635

4. Shuto Y. Cavity pattern formation and its dynamics of fiber fuse in single-mode optical fibers // J. Informatics Math. Sci. 2020. V. 12. № 4. P. 271–288. https://doi.org/10.26713/jims.v12i4.1459
5. Todoroki S. Quantitative evaluation of fiber fuse initiation probability in typical single-mode fibers // Proc. Opt. Fiber Commun. Conf. and Exhibition. Los Angeles, USA. 2015. P. 859–866. https://doi.org/10.48505/nims.3839
6. Todoroki S. Fiber fuse propagation modes in typical single-mode fibers // OSA Technical Digest. 2013. JW2A.11. https://doi.org/10.1364/NFOEC.2013.JW2A.11
7. Konin Y.A., Scherbakova V.A., Perminov A.V., et al. Study of micro-cavities formed by optical breakdown under the influence of a magnetic field // Opt. Commun. 2022. V. 517. P. 128242
. https://doi.org/10.1016/j.optcom.2022.128242
8. Конин Ю.А., Щербакова В.А., Булатов М.И. и др. Исследование характеристик оптического волокна с внутренней структурой микронеоднородностей, сформированной с помощью эффекта плавления // Оптический журнал. 2021. Т. 88. № 11. С. 80–89. https://doi.org/10.17586/1023-5086-2021-88-11-80-89
Konin Yu.A., Scherbakova V.A., Bulatov M.I., et al. Structural characteristics of internal microcavities produced in optical fiber via the fuse effect // J. Opt. Technol. 2021. V. 88. № 11. P. 672–677
https://opg.optica.org/jot/abstract.cfm?URI=jot-88-11-672
9. Yamada M., Tomoe A., Kinoshita T., et al. Heating and burning of optical fibers and cables by light scattered from bubble train formed by optical fiber fuse // IEICE Trans. Commun. 2012. V. E95.B. № 8. P. 2638–2641. https://doi.org/10.1587/transcom.E95.B.2638
10. Yamada M., Kinoshita T., Kimura Y., et al. Scattering characteristic of light generating an optical fiber fuse // Optoelectron. and Сommun. Conf. and Australian Conf. on Opt. Fiber Technol. July 6–10, 2014. P. 179–180.
11. Konin Y.A., Petrov A.A., Starikova V.A., et al. Wide temperature range fiber optic sensor // Bulletin of the Russian Academy of Sciences: Physics. 2022. V. 86. № 1. P. 100–103.
https://doi.org/10.3103/S1062873822700472
12. Konin Y.A., Petrov A.A., Perminov A.V., et al. Fiber optic sensor for cryogenic liquids // Bulletin of Russian Academy of Sciences: Physics. 2024. V. 88. № 6. P. 983–985. https://doi.org/10.1134/S1062873824706949
13. Ströbl S., Domke M., Rühm A., et al. Investigation of non-uniformly emitting optical fiber diffusers on the light distribution in tissue // Biomed. Opt. Exp. 2020. V. 11. № 7/1. P. 3601. https://doi.org/10.1364/BOE.394494
14. Бункин Ф.В., Трибельский М.К. Нерезонансное взаимодействие мощного оптического излучения с жидкостью // УФН. 1980. Т. 130. № 2. С. 193–240. https://doi.org/10.3367/UFNr.0130.198002a.0193
Bunkin F.V., Tribel’ski M.I. Nonresonant interaction of high-power optical radiation with a liquid // Soviet Physics Uspekhi. 1980. V. 23. № 2. P. 105–133. https://doi.org/10.1070/PU1980v023n02ABEH004904
15. Klubben W.S., Logunov S. L., Fewkes E. J., et al. Novel light diffusing fiber for use in medical applications // Proc. SPIE 9702. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI. March 7, 2016. P. 970218. https://doi.org/10.1117/12.2218267
16. Petukhova A.Y., Perminov A.V., Starikova V. A., et al. Mathematical model of radiation scattering on quasiperiodic microstructure in optical fiber // Bulletin of the Russian Academy of Sciences: Physics. 2024. V. 88. № 6. P. 1000–1009.
http://doi.org/10.1134/S1062873824706986
17. Корсакова Е.А., Львов А.Е., Кашуба И.А. и др. Волоконно-оптические сборки на основе поликристаллических световодов для среднего инфракрасного диапазона // Оптический журнал. 2019. Т. 86. № 7. С. 58–66. http://doi.org/10.17586/1023-5086-2019-86-07-58-66
Korsakova E.A., L’vov A.E., Kashuba I.A., et al. Fiberoptic assemblies based on polycrystalline lightguides for the mid-IR // 2019. J. Opt. Technol. V. 86. № 7. P. 439–445. ttps://doi.org/10.1364/JOT.86.000439